
Web3
Development
with Angular

Building Web Applications with Blockchain
and Web3 Technologies
—
Soumaya Erradi

Web3 Development
with Angular

Building Web Applications
with Blockchain and Web3

Technologies

Soumaya Erradi

Web3 Development with Angular: Building Web Applications with Blockchain and

Web3 Technologies

ISBN-13 (pbk): 979-8-8688-1885-1 ISBN-13 (electronic): 979-8-8688-1886-8
https://doi.org/10.1007/979-8-8688-1886-8

Copyright © 2025 by Soumaya Erradi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Anandadeep Roy
Coordinating Editor: Jessica Vakili

Cover image by Pixabay.com

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.
apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Soumaya Erradi
Concesio, Brescia, Italy

https://doi.org/10.1007/979-8-8688-1886-8

To everyone who writes code not just
to solve problems, but to open possibilities.

v

Table of Contents

About the Author ...xxv

About the Technical Reviewer ...xxvii

Preface ...xxix

Introduction ..xxxi

Chapter 1: Web3 ... 1

Introduction ... 1

Introduction to Web3 ... 2

Definition and Scope of Web3 ... 2

Evolution from Web1 and Web2 ... 3

Web1: The Static Web .. 4

Web2: The Social and Interactive Web ... 4

The Need for Web3 .. 4

Key Characteristics of Web3 .. 5

The Broader Implications of Web3 ... 8

Security ... 9

Cryptographic Principles ... 9

Decentralized Security Mechanisms ... 12

Security Challenges and Solutions .. 15

Ownership ... 19

Concept of Digital Ownership .. 19

Non-Fungible Tokens (NFTs) .. 21

Implications for Content Creators and Consumers .. 24

Native Payments ... 26

Integration of Cryptocurrency .. 26

vi

Benefits over Traditional Payment Systems .. 30

Case Studies and Examples .. 33

Transparency ... 36

Open-Source Nature of Web3 .. 36

Transparent Transaction Records .. 38

Benefits for Users and Developers .. 41

Driving Technologies ... 43

Blockchain Technology .. 43

Smart Contracts ... 46

Decentralized Storage and Computing .. 49

Application Types .. 53

Decentralized Applications (DApps) ... 54

Decentralized Finance (DeFi) Platforms .. 58

Conclusion .. 64

Chapter Summary ... 64

Chapter 2: Blockchain .. 65

Introduction ... 65

Introduction to Blockchain .. 66

Definitions and Basic Concepts ... 66

Historical Background and Evolution ... 67

Blockchain 1.0: Bitcoin and Cryptocurrencies ... 68

Blockchain 2.0: Smart Contracts and Ethereum .. 68

Blockchain 3.0: Scalability and Interoperability .. 68

Key Players and Projects ... 69

Technology Overview ... 71

Blockchain Architecture ... 72

Consensus Mechanisms .. 74

Nodes and Network Structure ... 77

Understanding Blockchain Transactions .. 80

Transaction Lifecycle ... 81

Transaction Fees and Incentives ... 83

TABLE OF CONTENTS

vii

The Principle of Decentralization ... 86

Definition and Importance ... 86

Benefits over Centralized Systems .. 88

Challenges and Trade-Offs .. 91

Blockchain Security ... 94

Cryptographic Security .. 94

Network Security Mechanisms .. 96

Case Studies of Security Breaches and Solutions ... 100

Conclusion .. 102

Chapter Summary ... 102

Chapter 3: Use Cases .. 103

Introduction ... 103

Blockchain Applications .. 103

Finance .. 105

Currency .. 110

Property Records ... 118

Smart Contracts ... 124

Supply Chains .. 130

Voting .. 136

Conclusion .. 143

Chapter Summary ... 144

Chapter 4: Pros and Cons of Blockchain .. 145

Introduction ... 145

The Benefit of Decentralization ... 146

Reduced Single Points of Failure ... 146

Enhanced Security and Resilience .. 147

Real-World Examples of Decentralization Benefits ... 148

Challenges of Decentralization .. 148

Efficient Transactions .. 149

Speed and Cost Benefits ... 150

TABLE OF CONTENTS

viii

Comparisons with Traditional Systems.. 151

Reliability and Accessibility ... 152

Examples of Efficient Transactions in Practice .. 152

Innovative Use Cases for Transaction Efficiency ... 153

Challenges to Achieving Efficiency .. 154

Future Trends in Blockchain Efficiency .. 154

Transparency in Blockchain .. 155

Public Ledger Benefits... 155

Applications in Various Sectors ... 156

Innovative Use Cases ... 157

Challenges of Blockchain Transparency .. 157

Future Trends in Blockchain Transparency .. 158

Cost Considerations .. 159

Initial Setup and Operational Costs ... 160

Cost Savings Through Efficiency ... 162

Balancing Costs and Benefits .. 162

Environmental Costs .. 163

Case Studies of Cost-Saving Implementations .. 164

Future Trends in Cost Management ... 164

Transaction Speed .. 165

Factors Affecting Speed .. 165

Comparisons with Traditional Systems.. 167

Examples of High-Speed Blockchains ... 167

Challenges in Achieving High Speed ... 168

Innovations in Driving Transaction Speed .. 168

Future Trends in Transaction Speed .. 169

Regulatory Challenges .. 169

Legal and Compliance Issues .. 170

Case Studies of Regulatory Responses ... 171

Challenges in Regulatory Implementation ... 172

Opportunities for Regulatory Advancement ... 173

TABLE OF CONTENTS

ix

Future Trends in Regulation ... 173

Expanded Regulatory Applications .. 174

Conclusion .. 174

Chapter Summary ... 175

Chapter 5: Blockchain Applications ... 177

Introduction ... 177

Differences Between Web2 and Web3 .. 177

Architectural Differences ... 177

User Experience Changes .. 179

Identity and Access ... 179

Financial Interactions .. 180

Content Ownership .. 180

Case Studies of Transition ... 181

Choosing the Right Blockchain ... 183

Factors to Consider ... 184

Scalability .. 184

Security ... 185

Decentralization ... 186

Developer Ecosystem .. 186

Costs .. 187

Regulatory Environment .. 187

Interoperability .. 188

Comparisons of Popular Blockchains .. 188

Decision-Making Framework .. 189

Introduction to Ethereum .. 190

Overview of the Ethereum Platform .. 191

Ethereum’s Vision .. 192

Key Features and Functionalities .. 193

Smart Contracts ... 194

Ethereum Virtual Machine (EVM) ... 195

Ether (ETH) ... 197

TABLE OF CONTENTS

x

Proof of Stake (PoS)... 198

Layer 2 Scaling Solutions .. 199

Token Standards .. 200

Ethereum Ecosystem and Community ... 201

DeFi on Ethereum .. 202

NFTs and the Creator Economy ... 203

DAOs and Decentralized Governance .. 204

Developer Ecosystem .. 205

Ethereum’s Future ... 205

Conclusion .. 206

Chapter Summary ... 207

Chapter 6: Wallet .. 209

Introduction ... 209

Understanding Cryptocurrency Wallets ... 209

What Is a Cryptocurrency Wallet? .. 210

Definition ... 210

Purpose ... 210

How Wallets Work .. 211

Asymmetric Cryptography ... 211

Transaction Process .. 212

Types of Wallets ... 213

Custodial vs. Non-custodial Wallets .. 214

Importance of Wallet Security ... 215

Common Misconceptions About Wallets .. 215

Real-World Examples .. 216

Mnemonic Phrases and Their Importance .. 216

What Is a Mnemonic Phrase? .. 216

Why Is It Important? .. 218

Best Practices for Mnemonic Phrase Security .. 218

Real-World Lessons: Horror Stories ... 223

Advanced Security Techniques .. 224

TABLE OF CONTENTS

xi

Encrypting Your Mnemonic .. 225

Multi-signature Wallets ... 225

Hidden Wallets ... 225

Cold Storage Solutions .. 225

Keys: Public and Private .. 226

Definition and Differences ... 226

What Is a Private Key? ... 226

What Is a Public Key? .. 227

Key Differences: Private vs. Public .. 228

Why Is This System Brilliant? .. 228

Importance of Key Management ... 229

Common Key Management Strategies .. 230

Real-World Key Management Failures .. 230

Advanced Key Management Strategies ... 231

Wallet Setup Process .. 232

Step-by-Step Guide to Setting Up a Wallet .. 233

Common Pitfalls and Solutions .. 237

Types of Wallets .. 238

Hardware Wallets .. 239

What Is a Hardware Wallet? .. 239

How Hardware Wallets Work ... 239

Advantages of Hardware Wallets ... 239

Disadvantages of Hardware Wallets .. 240

When to Use a Hardware Wallet .. 240

Real-World Example .. 241

Software Wallets .. 241

What Is a Software Wallet? .. 241

How Software Wallets Work .. 241

Advantages of Software Wallets .. 242

Disadvantages of Software Wallets ... 242

When to Use a Software Wallet ... 243

TABLE OF CONTENTS

xii

Real-World Example .. 243

Paper Wallets ... 243

What Is a Paper Wallet? ... 243

How Paper Wallets Work .. 244

Advantages of Paper Wallets ... 244

Disadvantages of Paper Wallets .. 244

When to Use a Paper Wallet .. 245

Real-World Example .. 245

Comparing Wallet Types .. 245

Conclusion .. 246

Chapter Summary ... 247

Chapter 7: Provider... 249

Introduction ... 249

Role of Providers in Blockchain .. 249

What Is a Provider? ... 250

Why Providers Are Needed .. 251

Historical Evolution of Providers .. 251

Types of Providers ... 252

Full Node Providers ... 252

RPC Providers (Remote Procedure Call Providers) .. 253

Wallet Providers ... 254

Gateway Providers ... 256

Indexing and Querying Providers ... 256

Hybrid Providers .. 257

Why Providers Are Critical to Blockchain Growth .. 257

Network Considerations for Providers .. 258

Performance Metrics ... 258

Latency .. 258

Throughput .. 260

Uptime ... 261

Global Geographic Coverage ... 262

TABLE OF CONTENTS

xiii

Reliability and Failover Strategies ... 263

Multi-region Redundancy .. 264

Automatic Retries and Circuit Breakers .. 264

Provider Fallback Mechanisms .. 265

Security Implications ... 266

Man-in-the-Middle (MITM) Risks ... 267

Data Injection Attacks .. 267

Key Management ... 268

Privacy Considerations .. 268

IP Address Exposure .. 268

Transaction Metadata Leakage ... 268

Techniques to Preserve Privacy ... 269

Comparing Wallet Providers vs. RPC Providers ... 269

Wallet Providers ... 270

Key Responsibilities of Wallet Providers .. 270

Private Key Management... 270

Transaction Construction and Signing ... 271

Session Management and Permissions .. 272

Categories of Wallet Providers ... 273

Real-World Case Study: MetaMask ... 273

RPC Providers .. 274

Key Responsibilities of RPC Providers ... 274

API Exposure .. 274

Node Management and Scaling .. 275

Real-World Case Study: Infura ... 275

Key Differences: A Deeper Comparison ... 276

Choosing the Right Provider(s) .. 276

Provider Selection Criteria .. 277

Speed and Performance .. 277

Key Performance Indicators (KPIs) .. 278

Importance of Regional Distribution .. 278

TABLE OF CONTENTS

xiv

Case Study: NFT Minting Stress Test ... 278

Decentralization and Trust Models .. 279

Levels of Decentralization ... 279

Why Trust Models Matter ... 279

Case Study: Infura Outage (2020) .. 280

Security and Compliance ... 280

Security Factors to Evaluate .. 280

Regulatory and Legal Compliance ... 281

Case Study: Tornado Cash Sanctions (2022) ... 281

Cost and Pricing Structures ... 281

Cost Factors to Compare ... 282

Optimizing Costs .. 282

Developer Experience (DX) .. 282

Multichain and Scalability Support .. 283

Future-Readiness: Emerging Technologies ... 283

Advanced Provider Topics ... 284

Self-Hosting RPC Endpoints .. 284

Requirements for Running Full Nodes ... 284

Operational Challenges.. 285

When Self-Hosting Makes Sense .. 286

Hybrid Architectures .. 286

Decentralized RPC Networks ... 287

Case Study: Pocket Network Growth ... 288

Provider Aggregators and Fallback Systems ... 288

Example Strategies.. 289

Libraries Supporting Provider Aggregation .. 289

Multichain Application Design ... 290

Evolving Responsibilities of Providers .. 290

Best Practices for Working with Providers .. 290

The Future of Providers ... 291

Conclusion .. 293

Chapter Summary ... 293

TABLE OF CONTENTS

xv

Chapter 8: Smart Contracts and Decentralized Applications 295

Introduction ... 295

Deep Dive into Smart Contracts .. 296

What Are Smart Contracts? ... 296

Core Properties .. 296

How Smart Contracts Differ from Traditional Contracts .. 297

How Smart Contracts Work (Under the Hood).. 298

The Ethereum Virtual Machine (EVM) .. 299

Limitations and Design Constraints ... 300

Real-World Examples of Simple Contracts .. 301

Why Smart Contracts Matter ... 302

Smart Contract Architecture .. 302

On-Chain vs. Off-Chain Logic .. 302

Contract Interfaces and ABIs ... 303

Storage and State Design .. 304

Modularity and Contract Composition ... 305

Inheritance .. 305

Delegation (Proxy Pattern) ... 306

Events and Logs .. 306

Reentrancy and Call Context ... 307

Composability and Interoperability .. 308

Popular Use Cases for Smart Contracts .. 308

Decentralized Finance (DeFi) ... 308

Non-Fungible Tokens (NFTs) .. 310

Marketplace Contracts (e.g., OpenSea and Blur) ... 311

Decentralized Autonomous Organizations (DAOs) ... 311

Escrow and Conditional Payments .. 312

Identity and Reputation Systems ... 312

Gaming and Virtual Economies .. 313

Supply Chain and Real-World Asset Tracking .. 313

The Smart Contract Lifecycle .. 314

TABLE OF CONTENTS

xvi

Drafting the Contract Logic.. 314

Writing the Contract (Solidity) ... 315

Compiling the Contract .. 316

Deploying the Contract .. 316

Verifying the Contract .. 317

Interacting with the Contract ... 317

Monitoring and Maintaining .. 318

Gas, Costs, and Efficiency .. 318

What Is Gas? .. 318

Why Gas Efficiency Matters ... 319

Common Gas Costs for Operations .. 320

Optimizing Contract Design for Gas Efficiency .. 320

Testing and Profiling Gas Usage .. 322

Tools for Gas Profiling .. 322

Gas Limits and Out-of-Gas Errors .. 322

Gas Optimization Tradeoffs .. 323

Implementation of Smart Contracts and dApps .. 323

Development Tools Overview ... 323

Hardhat .. 324

Foundry ... 325

Truffle .. 326

Remix IDE .. 327

Tool Comparison Table ... 327

Plugin Ecosystem and Extensions ... 328

Workflow Recommendation by Use Case .. 328

Writing Your First Contract (Line by Line) .. 328

Contract Goals ... 329

Full Code (Solidity 0.8+) .. 329

Walkthrough by Section ... 331

Pragma and License .. 331

State Variables ... 331

TABLE OF CONTENTS

xvii

Events .. 331

Modifiers ... 332

Constructor .. 332

Vote Functions ... 332

Close Voting (Owner Only) ... 333

Testing Your Contract ... 333

Compiling and Deploying Your Contract .. 334

Understanding the Compilation Process ... 334

Deployment Best Practices.. 338

Testing and Security Best Practices .. 339

The Role of Testing in Smart Contract Development ... 339

Types of Smart Contract Tests ... 340

Writing Unit Tests with Hardhat ... 340

Writing Tests in Foundry .. 341

Fuzz Testing and Invariant Checks .. 341

Common Smart Contract Vulnerabilities .. 342

Using Static Analysis Tools .. 343

Slither .. 343

MythX .. 343

Foundry Coverage ... 343

Auditing Basics .. 343

Real-World Testing Strategy .. 344

Integrating Smart Contracts into Decentralized Applications (dApps) 344

dApp Architecture Overview .. 345

Connecting to Wallets .. 345

Using ethers.js to Call Contracts ... 346

Calling View Functions (No Gas) .. 346

Sending Transactions (Costs Gas) ... 346

Displaying Events and Real-Time Feedback.. 346

Handling Gas, Errors, and Confirmations ... 346

Network Management and Testnets .. 347

Using Frontend Libraries and Frameworks ... 348

TABLE OF CONTENTS

xviii

UI/UX Patterns for Web3 .. 348

Conclusion .. 349

Chapter Summary ... 349

Chapter 9: Web Development with Angular .. 351

Introduction ... 351

Introduction to Angular ... 351

A Brief History ... 352

From Rewrite to Reinvention ... 352

Core Design Principles .. 352

Who Uses Angular Today? ... 353

Staying Current .. 353

Angular Architecture and Core Concepts .. 354

Components, Services, and Modules... 354

Routing and Navigation ... 354

Change Detection .. 355

Forms: Template-Driven vs. Reactive .. 355

Directives and Pipes .. 356

Component Lifecycle Hooks .. 356

Putting It All Together .. 356

Angular CLI and Project Setup .. 357

Installing the Angular CLI ... 357

Creating a New Project .. 358

Project Structure ... 358

Standalone vs. Module-Based Structure ... 359

Environmental Management ... 360

Modern Build System .. 360

Extending the Project with Schematics ... 361

Putting It into Practice ... 361

State Management in Angular... 361

Why State Management Matters ... 362

Local State with Components .. 362

TABLE OF CONTENTS

xix

Reactive State with RxJS .. 363

Global State with Store Patterns ... 364

Fine-Grained Reactivity with Signals ... 364

When to Avoid Overengineering .. 365

Putting It into Practice ... 365

Working with HTTP and APIs ... 366

The HttpClient .. 366

Creating a Service for API Calls ... 367

Consuming Data in a Component .. 368

Handling Errors and Retries .. 369

Working with REST and GraphQL APIs ... 369

Real-Time Data with WebSockets ... 369

Example: API Service with Pagination ... 370

Putting It into Practice ... 371

Building Reusable UI with Angular Material .. 371

What Is Angular Material? ... 371

Adding Angular Material to a Project ... 372

Theming and Customization .. 372

Commonly Used Components .. 372

Creating Custom Components with the CDK ... 373

Combining Components into a Layout ... 374

Putting It into Practice ... 375

Routing, Guards, and Lazy Loading ... 375

Angular Router Fundamentals ... 376

Nested Routes and Route Parameters ... 376

Route Guards ... 377

Lazy Loading .. 378

Advanced Routing Features ... 378

Putting It into Practice ... 379

Testing Angular Applications ... 379

Why Test? .. 380

TABLE OF CONTENTS

xx

Unit Testing Components and Services ... 380

Testing Components with TestBed ... 381

Modern Test Runners ... 382

Mocking HTTP Requests .. 382

End-to-End (E2E) Testing ... 383

A Balanced Testing Strategy .. 384

Performance Optimization .. 385

Tree-Shaking and Ahead-of-Time (AOT) Compilation .. 386

Change Detection Strategies ... 386

Fine-Grained Reactivity and Zoneless Change Detection .. 387

Component-Level Optimizations.. 387

Lazy Loading and Route-Level Code Splitting ... 387

Server-Side Rendering (SSR) and Hydration ... 388

Putting It into Practice ... 388

Angular in the Real World.. 389

Angular vs. Other Frontend Approaches .. 389

Best Practices from Large Projects ... 389

Preparing for Modern Integrations .. 390

Case Study: Evolving an Enterprise Dashboard ... 390

Putting It All Together .. 391

Conclusion .. 391

Chapter Summary ... 392

Chapter 10: Web3 Development with Angular .. 393

Introduction ... 393

Introduction to Decentralized Applications (dApps) .. 393

What Defines a dApp? ... 394

The Role of the Frontend ... 394

Typical dApp Architecture .. 395

Why Use Angular for dApps? ... 396

What Comes Next .. 397

TABLE OF CONTENTS

xxi

Connecting Angular with Blockchain Networks .. 397

Setting Up the Development Environment ... 397

Required Tools and Versions .. 397

Creating the Project Structure ... 398

Running a Local Blockchain .. 398

Compiling and Deploying ... 398

Connecting the Angular App .. 399

Using a Wallet .. 399

Understanding Blockchain RPC Providers ... 399

Using Libraries for Blockchain Access .. 400

Managing Provider Connections in Angular Services .. 400

Network Switching and Fallbacks ... 401

Security Considerations ... 402

Putting It into Practice ... 402

Managing Wallet Integration ... 403

What Is a Wallet? ... 403

Connecting to a Wallet in an Angular App .. 403

Handling Wallet State Reactively ... 404

Requesting Permissions and Signing .. 405

Security Best Practices ... 406

Putting It into Practice ... 406

Smart Contracts: Reading and Writing Data .. 407

Interacting with Smart Contracts in Angular ... 407

Reading Contract State .. 407

Writing Data and Sending Transactions ... 408

Handling Gas and Fees .. 409

Handling Errors and Edge Cases ... 409

Putting It into Practice ... 410

Full Smart Contract Example with Hardhat ... 410

Writing the Contract .. 411

Compiling the Contract .. 411

TABLE OF CONTENTS

xxii

Deploying the Contract Locally .. 412

Copy the ABI .. 412

Creating the Angular Contract Service .. 412

Using the Service in a Component .. 414

Recap .. 415

Handling Real Errors and Gas Estimation Problems .. 415

Why “Cannot Estimate Gas” Happens ... 415

Practical Strategies to Handle It .. 416

Defensive Patterns .. 417

Putting It into Practice ... 418

Real-World Patterns for Web3 Frontends .. 418

Protecting Routes and Features .. 419

Listening for Blockchain Events .. 419

Keeping UX Responsive ... 420

Security Best Practices ... 420

Handling Network Changes ... 421

Resilient Error Handling ... 421

Putting It into Practice ... 422

Putting It All Together: A Mini Angular dApp .. 422

A Practical Example: Decentralized Voting App ... 422

Project Structure ... 422

Connecting the Wallet .. 423

Reading On-Chain Data ... 424

Writing a Transaction ... 424

Protecting Voting Routes ... 425

Reactive Feedback .. 425

Full Example: Combining It All ... 425

Final Tips ... 425

Testing and Deployment Strategies for Angular dApps ... 426

Testing Smart Contracts .. 426

Testing Angular Wallet Logic .. 427

TABLE OF CONTENTS

xxiii

Using Testnets ... 428

Deployment Best Practices.. 428

Maintainability ... 429

Conclusion .. 429

Chapter Summary ... 430

Final Words and Further Learning ... 431

Suggested Resources for Continued Learning .. 431

Keep Building .. 432

 Index ... 433

TABLE OF CONTENTS

xxv

About the Author

Soumaya Erradi is an experienced web developer and

passionate IT and electronics trainer, specializing in frontend

development and enterprise applications built with Angular.

She spends most of her time exploring new advancements in

the tech world and helping other developers enhance their

skills. As a conference speaker, she covers advanced Angular

topics, provides tips for integrating smart contracts, and

shares the best solutions for Web3 applications.

xxvii

About the Technical Reviewer

Serena Sensini is an Italian computer engineer specializing

in Artificial Intelligence (AI) and Natural Language

Processing (NLP). She has extensive experience in designing

and developing web and stand-alone software solutions

from scratch, with skills spanning mobile cross-platform

development, web design, data-driven solutions, and

software architecture. Serena is also an author of five

technical books on topics such as Docker, Kubernetes, and

NLP, and she runs a popular tech blog called TheRedCode.it

where she shares insights and fosters tech culture. She currently serves as an Innovation

& Emerging Technologies Leader at Dedalus, and beyond her professional roles, Serena

is a tech content creator, speaker, and educator, regularly conducting courses and

seminars with nonprofit organizations, contributing significantly to the tech community

in Italy.

xxix

Preface

This book is the result of years of exploration and study of the Web3 ecosystem. I wanted

to bring together everything I’ve learned into one place to support those who find

themselves in the same position I was when I first started, unsure where to look and

with very few resources available. At that time, there was a lack of documentation and

practical examples, and as someone used to building applications with Angular, I often

had to figure things out on my own.

I’m proud of the path I’ve taken and of everything I’ve learned along the way. The

Web3 community, although still small, has been a source of energy, encouragement, and

inspiration, giving me the strength to keep moving forward and achieve this goal.

As I often like to say, “If it doesn’t exist, build it yourself.” That’s exactly what I did, and

now, I’m sharing it with you.

xxxi

Introduction

Web3 has become one of the most transformative movements in modern software

development. By shifting from centralized platforms to decentralized applications, it

introduces new possibilities for ownership, trust, and innovation on the web. At the same

time, Web3 development brings its own challenges: learning how blockchains work,

writing and deploying smart contracts, and connecting them to user-friendly applications.

This book is written to guide you through that journey. It combines the worlds

of blockchain and smart contracts with modern Angular development, showing

you how to move from theory to practice with clear explanations, code examples, and

real-world use cases. Whether you’re a web developer curious about blockchain or a

blockchain enthusiast looking to build accessible frontends, this book will give you the

tools and confidence to create complete decentralized applications.

 Who This Book Is For

This book is aimed at developers with some experience in web technologies, especially

JavaScript or TypeScript, who want to understand how to build decentralized

applications. If you are comfortable with Angular basics, that will help, but the chapters

are structured to provide step-by-step guidance. Even if you are new to blockchain, you

will find foundational chapters that introduce the core concepts before moving to more

advanced topics.

 How This Book Is Structured

The book is organized into three parts that build on one another:

• Part I – Foundations of Web3 and Blockchain

 These chapters introduce blockchain architecture, consensus

mechanisms, and the evolution of the web from Web1 to Web3.

You’ll also learn about decentralization, smart contracts, and the

advantages and challenges of blockchain.

xxxii

• Part II – Building Blocks of Web3 Applications

 Here, we explore practical use cases across industries, examine the

strengths and weaknesses of blockchain technology, and dive deeper

into applications such as finance, property records, and supply

chains. This section also includes a detailed discussion of Ethereum

and its ecosystem.

• Part III – Developing Web3 Applications with Angular

 The final chapters bring everything together. You’ll see how to

integrate Angular with Web3 libraries, design and implement

decentralized frontends, manage state, and test your applications

effectively. The book concludes with a full dApp example, complete

with smart contract deployment and Angular integration, to help you

put theory into practice.

 What You Will Learn

By the end of this book, you will

• Understand the core principles of blockchain and decentralized

applications.

• Write and deploy smart contracts to Ethereum-compatible networks.

• Build modern dApps with Angular, integrating them seamlessly with

blockchain backends.

• Explore best practices for state management, testing, and

performance in Web3 projects.

• Gain a clear picture of where Web3 is today and where it is heading.

This book is not only about code but also about context. Web3 is evolving rapidly,

and developers need to grasp both the technical details and the broader ecosystem. My

hope is that this book will help you join the conversation, contribute to the community,

and build applications that make a real impact.

INTRODUCTION

1
© Soumaya Erradi 2025
S. Erradi, Web3 Development with Angular, https://doi.org/10.1007/979-8-8688-1886-8_1

CHAPTER 1

Web3

 Introduction

This chapter introduces Web3 as a foundational transformation in the way the

internet is built, accessed, and experienced. Moving beyond its blockchain roots,

Web3 encompasses a broader shift toward decentralization, transparency, and user

empowerment. Through this chapter, readers will

• Understand the historical evolution from Web1 to Web3

• Discover the technologies and principles that define Web3 (e.g.,

decentralization, trustless systems, and digital ownership)

• Learn about key application areas, including decentralized finance

(DeFi), native payments, and NFTs

• Examine the security challenges and solutions within

decentralized systems

• Explore how transparency, governance, and user control are

embedded into Web3

• Analyze real-world case studies to understand practical adoption

This chapter sets the stage for more advanced topics on smart contracts, DApps, and

blockchain integration in the following chapters.

https://doi.org/10.1007/979-8-8688-1886-8_1#DOI

2

 Introduction to Web3

 Definition and Scope of Web3

When we talk about Web3, the first thing that often comes to mind is blockchain

technology. While blockchain is a crucial component, Web3 represents a much

broader paradigm shift in how the internet is structured and operates. Web3 is the third

generation of the web, moving beyond the centralized, server-client model of Web1 and

the more interactive, but still centralized, Web2. Figure 1-1 illustrates the transition from

Web1 to Web3. At its core, Web3 envisions an internet where data, applications, and

services are decentralized, providing more control, privacy, and opportunities to users.

Figure 1-1. Evolution of the Web

In this new era, Web3 aims to decentralize not just data storage and processing

but also governance and decision-making. Through technologies like blockchain,

distributed ledgers, smart contracts, and decentralized applications (DApps),

Web3 introduces a trustless and permissionless environment. This means users no

longer need to rely on centralized entities or intermediaries for online transactions,

communications, or access to services. Instead, these processes are automated and

secured by cryptographic algorithms and consensus mechanisms. This distinction is

visually represented in Figure 1-2.

CHAPTER 1 WEB3

3

Figure 1-2. Centralized vs. Decentralized Web

Web3’s scope extends far beyond finance and cryptocurrencies, impacting areas

such as social media, content creation, governance, and even the future of work. It

seeks to redefine how we interact with the digital world, promoting concepts like digital

ownership, privacy, and transparency. In this chapter, we will explore these key aspects,

investigating how Web3 represents a transformative shift in the foundation of the

internet’s architecture and the profound implications it has on individuals and society.

 Evolution from Web1 and Web2

To fully understand the significance of Web3, it’s essential to comprehend its evolution

from the earlier stages of the internet: Web1 and Web2.

CHAPTER 1 WEB3

4

 Web1: The Static Web

Web1, also known as the “read-only” web, marked the beginning of the internet era in

the late 1980s and early 1990s. During this period, the web was primarily composed

of static web pages. Users could consume content, but interaction was minimal, if not

nonexistent. Websites were essentially digital brochures, and information flowed in one

direction, from the publisher to the consumer. The web was a decentralized network

in terms of hosting, but the experience was limited, as it lacked user interaction and

dynamic content.

 Web2: The Social and Interactive Web

The transition to Web2, starting in the early 2000s, brought a more dynamic, interactive,

and social web. Web2 is characterized by the rise of user-generated content, social

media platforms, and the centralization of services. Major tech companies like Google,

Facebook, and Amazon became gatekeepers of data and information. While Web2 made

the internet more accessible and interactive, it also led to issues such as data privacy

concerns, monopolistic control, and the exploitation of user data for profit.

In Web2, users could not only consume content but also create, share, and interact

with it. However, this increased interactivity came with a trade-off: users had to

surrender control over their data to centralized platforms, which could manipulate,

monetize, or censor content at their discretion. This centralization also led to significant

power imbalances, where a few corporations have a huge influence on the digital lives of

billions of people.

 The Need for Web3

The limitations of Web2, particularly regarding data privacy, ownership, and

centralization, laid the foundation for Web3. Users and developers alike began to seek

alternatives that would restore control, transparency, and trust in the digital realm. Web3

addresses these issues by decentralizing the web, giving power back to the users through

technologies that enable peer-to-peer interactions without the need for intermediaries.

The Web2 to Web3 transition is shown in Figure 1-3.

CHAPTER 1 WEB3

5

Web3 envisions a web where users own their data, identity, and content. They

can interact, transact, and collaborate directly with others in a secure and trustless

environment. This shift is not just technical but also ideological, advocating for an

internet that is more fair and inclusive, where users have more control and autonomy.

Figure 1-3. Migration from Web2 to Web3

 Key Characteristics of Web3

Figure 1-4. Benefits and Features of Web3

CHAPTER 1 WEB3

6

As we move forward into the Web3 era, several defining characteristics set it apart from

its predecessors (Figure 1-4 summarizes the core features of Web3):

 1. Decentralization:

One of the foundational principles of Web3 is decentralization.

Unlike Web2, where data and services are controlled by

centralized entities, Web3 relies on distributed networks.

Blockchain and other decentralized technologies ensure that

data is stored across a network of nodes, reducing the risk of

censorship, data breaches, and single points of failure.

 2. Trustless and Permissionless:

Web3 operates on a trustless model, meaning that participants

do not need to trust a central authority or intermediary to

engage in transactions or interactions. Smart contracts, self-

executing contracts with the terms of the agreement directly

written into code, play a crucial role in this trustless environment.

Additionally, Web3 is permissionless, allowing anyone to

participate in the network without needing approval from a

central authority.

 3. Digital Ownership and Identity:

In Web3, users have full ownership of their digital assets and

identities. Through technologies like NFTs (non-fungible tokens),

users can prove ownership of digital items, such as art, music,

and virtual real estate. Moreover, decentralized identity solutions

empower users to control their online identities without relying on

centralized platforms.

 4. Interoperability:

Web3’s interoperability makes it possible for different networks,

platforms, and applications to work seamlessly together. This

interoperability is enabled by open standards and protocols,

which facilitate the easy exchange of data and assets across

various decentralized systems.

CHAPTER 1 WEB3

7

 5. Enhanced Security and Privacy:

Security and privacy are central to Web3’s design. Cryptographic

techniques ensure that data is secure and private, while

decentralized architectures reduce the risks associated with

centralized data storage. Users have greater control over their

personal information, with the ability to share data on a need-to-

know basis.

 6. Incentivization and Tokenomics:

Web3 introduces new economic models through tokenomics,

the use of tokens to incentivize and reward network participants.

Tokens can represent ownership, governance rights, or access to

services. This creates a more participatory economy where users

are not just consumers but also stakeholders in the networks

they use.

 7. Transparency and Open Source:

Web3 is known for its transparency. Most Web3 projects are

open- source, allowing anyone to audit the code and verify the

integrity of the system. Users and developers are able to trust each

other when a network is open because they can see exactly how it

operates and where potential vulnerabilities may lie.

CHAPTER 1 WEB3

8

Figure 1-5. Problems with Web2 Architecture

 The Broader Implications of Web3

The rise of Web3 is not just a technological evolution but also a social and economic

revolution. By decentralizing the web, Web3 challenges existing power structures,

giving more agency to individuals and communities. It has the ability to make access

to information, financial services, and digital assets more accessible, reducing the

digital divide and promoting greater inclusion. These societal implications are shown in

Figure 1-6.

For content creators, Web3 offers new ways to monetize their work and engage with

their audiences directly. For consumers, it provides greater control over their data and

interactions online. For developers, Web3 opens up a new frontier of innovation, where

they can build decentralized applications that operate independently of any central

authority.

CHAPTER 1 WEB3

9

Figure 1-6. Social Impact of Web3

 Security

Security is a fundamental aspect of Web3, essential for maintaining trust and ensuring

the integrity of decentralized networks. In this section, we will explore how security

is managed in Web3, focusing on the unique challenges and solutions that emerge in

a decentralized environment. We will look at the role of cryptography, decentralized

identity, and how security is enforced in a permissionless world.

 Cryptographic Principles

Web3’s architecture relies heavily on cryptography to secure data, transactions, and user

identities. The cryptographic principles that make up Web3 are essential to its operation

as a decentralized and trustworthy system. These principles ensure that data is protected

and that transactions are managed securely across the network.

CHAPTER 1 WEB3

10

 1. Public and Private Key Cryptography:

Public and private key cryptography is the foundation of secure

communication and transactions on Web3. See Figure 1-7 for

how public/private key pairs function. Each participant in a Web3

network holds a pair of keys: a public key that can be shared with

others and a private key that must be kept secure. This system

allows for the encryption of messages and transactions, ensuring

that only the intended recipient can decrypt and access the

information.

The use of digital signatures, enabled by private keys, is crucial in

Web3. When a user initiates a transaction or interaction, they sign

it with their private key. This signature can be verified by others

using the corresponding public key, confirming the authenticity

and integrity of the transaction without the need for a central

authority.

Figure 1-7. Public vs. Private Key Encryption

 2. Zero-Knowledge Proofs (ZKPs):

Zero-knowledge proofs are a fascinating cryptographic technique

that allows one party to prove to another that they know a value

without revealing the value itself. ZKPs are increasingly important

in Web3, particularly for enhancing privacy and security in

decentralized applications. Figure 1-8 illustrates the principle

behind ZKPs.

CHAPTER 1 WEB3

11

Figure 1-8. How Zero-Knowledge Proofs Work

For example, in a transaction, a zero-knowledge proof might allow

a user to prove they have enough funds to complete a transaction

without revealing their entire balance. This protects user privacy

while still ensuring the transaction’s validity. ZKPs are being used

in various Web3 applications, including decentralized finance

(DeFi) platforms, where privacy and security are essential.

 3. Decentralized Identity (DID):

Decentralized identity is an emerging area in Web3 that addresses

the issue of identity management in a decentralized environment.

In traditional systems, identity is often tied to centralized entities

like governments, corporations, or platforms, which can lead to

security risks, including identity theft and data breaches.

In contrast, DID systems give users control over their digital

identities. These identities are stored on a blockchain or

decentralized ledger, allowing users to prove their identity or

credentials without relying on a central authority. This reduces the

risk of identity theft and provides a more secure way to manage

personal information.

Users in a DID system can also control what information they

share and with whom, enhancing privacy. For instance, a user

could prove they are over 18 without disclosing their exact

birthdate. This selective disclosure is particularly valuable in

Web3, where privacy and user control are key priorities. The

concept is summarized in Figure 1-9.

CHAPTER 1 WEB3

12

Figure 1-9. Decentralized Identity Structure

 Decentralized Security Mechanisms

Web3’s security architecture is different from traditional centralized systems. In Web3,

security is distributed across the network and uses various mechanisms to secure

the system’s integrity, prevent malicious actors, and maintain trust without central

supervision.

CHAPTER 1 WEB3

13

 1. Peer-to-Peer Networks:

In Web3, peer-to-peer (P2P) networks are the foundation for decentralized

communication and data sharing. These networks operate without a

central server, distributing data across numerous nodes. Each node in

the network communicates directly with others, sharing information

and resources. Figure 1-10 shows a typical P2P structure.

This decentralized approach enhances security by eliminating

central points of failure. In a traditional centralized system, if the

central server is compromised, the entire system can be affected.

However, in a P2P network, even if some nodes are compromised,

the network as a whole can continue to function securely. This

resilience is a key security advantage of Web3.

Figure 1-10. Peer-to-Peer Architecture

 2. Decentralized Governance:

Decentralized governance plays a crucial role in the security

of Web3 networks. Unlike traditional systems where a central

authority makes decisions, decentralized networks often use

decentralized autonomous organizations (DAOs) to govern the

network. Refer to Figure 1-11 for a DAO governance process.

CHAPTER 1 WEB3

14

In a DAO, decisions are made collectively by the community,

often through a voting process where token holders can vote on

proposals. This decentralized approach to governance reduces

the risk of corruption and central points of control, which are

common vulnerabilities in traditional systems. It also ensures

that security measures can be updated and improved through a

transparent, community-driven process.

Figure 1-11. DAO Governance Model

CHAPTER 1 WEB3

15

 3. Privacy-Enhancing Technologies:

In addition to ZKPs, Web3 incorporates various privacy-enhancing

technologies that contribute to its security framework. These

technologies help protect user data and ensure that sensitive

information is not exposed during transactions or interactions.

As an example, mixing services, also known as tumblers, are

used in some Web3 applications to enhance transaction privacy.

These services mix the cryptocurrency transactions of many

users to obfuscate the origin of funds, making it difficult to

trace a transaction back to its source. This is particularly useful

in scenarios where users wish to maintain anonymity. See

Figure 1-12 for how mixing services work.

Another example is the use of homomorphic encryption, which

allows data to be encrypted and processed in its encrypted form.

This means that sensitive data can be analyzed and used without

ever being decrypted, protecting user privacy and enhancing

security.

Figure 1-12. Privacy via Mixing Services

 Security Challenges and Solutions

While Web3 offers significant advancements in security, it also presents unique

challenges. These challenges arise from the decentralized nature of Web3, the early

stages of its technologies, and the need for large adoption of best practices.

CHAPTER 1 WEB3

16

 1. User Responsibility and Education:

One of the primary challenges in Web3 security is the shift in

responsibility from centralized entities to individual users. In

Web3, users are responsible for managing their private keys,

securing their wallets, and understanding the implications of their

actions on the network.

This increased responsibility can lead to security risks, particularly

for users who lack expertise in the complexities of cryptography

and decentralized systems. Phishing attacks, loss of private keys,

and user errors are common issues that can result in the loss of

funds or data.

To address these challenges, education is crucial. Users must be

informed about best practices for securing their assets, including

the use of hardware wallets, multi-factor authentication, and

the importance of safeguarding private keys. Key management

strategies are shown in Figure 1-13. Developers and platforms

can help reduce user errors by creating interfaces that are more

intuitive and user-friendly.

Figure 1-13. Key Management Best Practices

CHAPTER 1 WEB3

17

 2. Social Engineering and Phishing Attacks:

Social engineering and phishing attacks are significant threats

in Web3 because they focus on the human element instead of

technical vulnerabilities. In these attacks, malicious actors attempt

to trick users into revealing their private keys, passwords, or other

sensitive information. Common attack vectors are illustrated in

In the decentralized world of Web3, where transactions are

irreversible and there is no central authority to appeal to, falling

victim to such attacks can have severe consequences. To deal

with these threats, Web3 platforms must implement robust

anti-phishing measures, such as warning users of potential

risks, educating them about common attack vectors, and using

technologies like domain verification to ensure the legitimacy of

websites and services.

Figure 1-14. Phishing Attack Vectors

CHAPTER 1 WEB3

18

 3. Legal and Regulatory Challenges:

Web3 operates in a largely unregulated environment, which

can lead to legal and regulatory challenges. The decentralized

nature of Web3 makes it difficult to enforce traditional laws and

regulations, which are typically designed for centralized entities.

As governments and regulatory bodies begin to focus more on

Web3, there will be an increasing need for legal frameworks that

balance innovation with security and compliance. This includes

addressing issues such as the legality of DAOs, the taxation

of cryptocurrency transactions, and the enforcement of data

protection laws in decentralized networks. Figure 1-15 maps

global regulatory challenges.

Web3 developers and stakeholders should be vigilant in working

with regulators to make sure that new laws and regulations are

fair, effective, and supportive of the decentralized ethic of Web3.

This might involve the creation of self-regulatory organizations or

industry standards that can help guide the development of secure

and compliant Web3 technologies.

Figure 1-15. Global Regulatory Considerations

CHAPTER 1 WEB3

19

 Ownership

Ownership is a central concept in Web3, primarily changing how we perceive, manage,

and transfer digital assets. In contrast to the traditional web, where centralized entities

often control and monetize user data and content, Web3 empowers individuals with

true ownership of their digital assets, identity, and interactions. This section will explore

the concept of digital ownership, the role of non-fungible tokens (NFTs), and the

implications for content creators and consumers.

 Concept of Digital Ownership

In the Web2 era, digital ownership is often a vague concept. While users may believe they

own the content they create or the data they generate, the reality is that this “ownership”

is often controlled by centralized platforms. These platforms can modify, delete, or

monetize user content without the user’s direct consent, leading to significant questions

about who truly owns digital assets in the modern internet.

 1. Centralized vs. Decentralized Ownership:

In centralized systems, digital ownership is typically governed by

the terms of service of a platform. For example, when you upload

a photo to a social media site, the platform often retains certain

rights to use, distribute, or even sell that content. Similarly, in the

case of digital goods, such as eBooks or music, users often only

purchase a license to use the content, not the content itself. This

centralized model limits user control and creates a dependency

on the platform’s continued existence and terms. See Figure 1-16

for a comparison of ownership models.

Web3 changes this dynamic by leveraging decentralized

technologies, such as blockchain, to give users direct control over

their digital assets. In a Web3 environment, ownership is verified

and managed through cryptographic keys, ensuring that only the

owner of a private key can access or transfer the associated digital

assets. This shift from platform- controlled ownership to user-

controlled ownership is one of the most significant advancements

of Web3.

CHAPTER 1 WEB3

20

Figure 1-16. Centralized vs. Decentralized Ownership

 2. True Ownership in Web3:

In Web3, true ownership means having direct and exclusive

control over digital assets. This is made possible through

decentralized networks where ownership records are stored

immutably on a blockchain. Once you own a digital asset, it

cannot be taken away or altered without your permission, and you

can transfer or sell it independently of any centralized platform.

This form of ownership extends beyond simple digital goods

to include a wide range of assets, including cryptocurrencies,

domain names, virtual real estate, and even digital identities. An

illustrative case is having a cryptocurrency wallet in Web3, which

gives you complete control over its funds, with no one being able

to freeze or take your assets. Ownership verification is shown in

Figure 1-17.

CHAPTER 1 WEB3

21

Figure 1-17. Verifying Ownership via Blockchain

 Non-Fungible Tokens (NFTs)

One of the most visible manifestations of digital ownership in Web3 is the rise of non-

fungible tokens (NFTs). NFTs represent unique digital assets that can be owned, traded,

and verified on a blockchain, providing a new way to establish and prove ownership of

digital content.

 1. What Are NFTs?

Non-fungible tokens (NFTs) are cryptographic assets that

represent something unique and cannot be exchanged on a

one-to-one basis like cryptocurrencies. The distinction is shown

in Figure 1-18. Each NFT has a distinct value and identity, often

associated with digital art, music, videos, virtual real estate,

collectibles, and more. Unlike cryptocurrencies such as Bitcoin or

Ethereum, which are fungible (each unit is identical and can be

exchanged), NFTs are indivisible and unique.

NFTs are stored on a blockchain, where they can be bought,

sold, or traded. The blockchain ensures the provenance and

authenticity of the NFT, meaning that the ownership history of

the digital asset is transparent and cannot be tampered with.

This makes NFTs particularly valuable for artists, creators, and

collectors, as they can prove ownership of their work or collection

in a way that was not possible before.

CHAPTER 1 WEB3

22

Figure 1-18. Fungible vs. Non-Fungible Tokens

 2. The Role of NFTs in Digital Ownership:

NFTs have revolutionized the concept of digital ownership by

allowing creators to tokenize their work, thereby turning digital

files into unique, tradeable assets. For example, an artist can

create a digital painting, mint it as an NFT, and sell it to a buyer

who will then have verifiable ownership of that digital painting.

The NFT can include metadata that links to the artwork, as well

as information about its creator, its purchase history, and any

royalties owed to the artist on future sales. Figure 1-19 illustrates

the lifecycle of an NFT.

This innovation has significant implications for the digital

economy. For one, it allows content creators to directly monetize

their work without relying on intermediaries like galleries,

record labels, or streaming platforms. Moreover, NFTs can be

programmed with smart contracts that automatically pay royalties

to creators each time the NFT is resold, providing a continuous

revenue stream and ensuring that creators benefit from the

increasing value of their work.

CHAPTER 1 WEB3

23

Figure 1-19. NFT Lifecycle Overview

 3. Use Cases and Examples:

The impact of NFTs is already being felt across various industries.

In the art world, digital artists like Beeple have sold NFT artworks

for millions of dollars, highlighting the demand for verifiable

digital ownership. NFT use cases across industries are shown in

Figure 1-20. Musicians are also exploring NFTs as a way to release

limited edition albums, concert tickets, or exclusive content,

directly connecting with their fans without the need for traditional

music distribution channels.

In the gaming industry, NFTs are being used to create and trade in-

game items, skins, and virtual land. Players can own and trade these

digital assets independently of the game developer, ensuring that their

investments in time and money remain theirs, even if the game or

platform changes. Virtual worlds like Decentraland and The Sandbox

have embraced NFTs to enable users to buy, sell, and develop virtual

real estate, creating entirely new economies within digital environments.

CHAPTER 1 WEB3

24

Figure 1-20. NFT Use Cases

 Implications for Content Creators and Consumers

The transition to true digital ownership in Web3 has significant repercussions for both

content creators and consumers. It changes the power dynamics of the internet, opens

new avenues for monetization, and alters the process of creating and distributing value

in the digital world. This contrast is visualized in Figure 1-21.

 1. Empowering Content Creators:

Web3 gives content creators more control over their work and

how it is distributed. By minting their creations as NFTs, artists,

musicians, writers, and other creators can directly sell their work

to consumers without intermediaries taking a significant cut of

the profits. This democratization of the creative economy allows

more creators to earn a living from their work, regardless of their

geographic location or access to traditional distribution channels.

CHAPTER 1 WEB3

25

Furthermore, the ability to program smart contracts into NFTs

means that creators can ensure they continue to receive royalties

on secondary sales. This is a significant shift from traditional

models, where creators often only profit from the initial sale of

their work, with little to no control over how it is used or resold in

the future.

Figure 1-21. Web2 vs. Web3 Creator Rights

 2. Consumer Benefits and Challenges:

For consumers, Web3 and the advent of NFTs offer the

opportunity to own unique digital assets that can appreciate in

value over time. This is in contrast to the current model in Web2,

where users typically do not own the digital content they purchase

but merely have a license to access it.

However, with this new model also come challenges. The

value of NFTs can be highly speculative, with prices fluctuating

dramatically based on market trends, demand, and the perceived

value of digital assets. Additionally, the decentralized nature of

Web3 means that consumers must take greater responsibility for

securing their digital assets, as there are no central authorities to

assist in recovering lost or stolen NFTs.

CHAPTER 1 WEB3

26

 3. The Future of Digital Ownership:

As Web3 continues to evolve, the concept of digital ownership

will likely expand to include new forms of assets and interactions.

For example, decentralized social media platforms could allow

users to own their data and content, choosing how and where it is

shared and even monetizing it through microtransactions or data

marketplaces.

Additionally, the integration of NFTs with virtual and augmented

reality could create immersive digital experiences where

ownership of virtual goods and spaces plays a central role. This

could lead to the development of entirely new digital economies,

where value is created, exchanged, and owned in ways that are

currently unimaginable.

 Native Payments

One of the most transformative aspects of Web3 is the integration of native payments

directly into the structure of the internet. Unlike traditional payment systems that

rely on banks and payment processors as intermediaries, Web3 enables peer-to-peer

transactions using cryptocurrencies and decentralized financial technologies. This

section explores the role of native payments in Web3, the benefits they offer over

traditional systems, and real-world examples of their application.

 Integration of Cryptocurrency

At the heart of Web3’s native payments is the use of cryptocurrency. Cryptocurrencies,

such as Bitcoin, Ethereum, and a multitude of other digital currencies, serve as

the primary medium of exchange within the Web3 ecosystem. These currencies

are designed to operate on decentralized networks, enabling secure, trustless, and

borderless transactions.

CHAPTER 1 WEB3

27

 1. What Are Native Payments?

Native payments in Web3 refer to the use of cryptocurrencies for

transactions directly within decentralized applications (DApps)

and platforms. Unlike traditional online payments that require a

third- party processor like PayPal or Visa, native payments occur

directly between users via blockchain technology. Smart contracts

make it possible to exchange directly without the need for an

intermediary, as they automatically enforce transaction terms. See

Figure 1-22 for a comparison of payment models.

Figure 1-22. Native vs. Traditional Payments

This can be seen in a decentralized marketplace; a buyer can pay

for goods or services using cryptocurrency, with the payment

being processed and recorded on the blockchain. The seller

receives the payment directly in their digital wallet, often within

minutes, with minimal transaction fees compared to traditional

payment systems.

CHAPTER 1 WEB3

28

 2. Types of Cryptocurrencies Used:

There are various types of cryptocurrencies used in Web3

(Figure 1-23), each serving different purposes:

• Bitcoin (BTC): The first and most well-known cryptocurrency,

Bitcoin is often used as a store of value and medium of exchange

in Web3 transactions. Its decentralized nature makes it a popular

choice for payments in the digital economy.

• Ethereum (ETH): Ethereum is not only a cryptocurrency but also

a platform for building decentralized applications. Ether (ETH),

its native currency, is widely used in Web3 for transactions,

paying for gas fees and participating in decentralized finance

(DeFi) activities.

• Stablecoins: Stablecoins, such as USDT (Tether) and USDC (USD

Coin), are cryptocurrencies pegged to the value of a fiat currency,

typically the US dollar. These are used in Web3 for transactions

that require price stability, making them a preferred choice for

everyday payments and remittances.

• Altcoins and Tokens: Beyond Bitcoin and Ethereum, there are

numerous other cryptocurrencies and tokens that serve specific

functions within their respective ecosystems. Governance tokens

allow holders to participate in the decision-making processes

of a DAO, while utility tokens provide access to specific services

within a DApp.

CHAPTER 1 WEB3

29

Figure 1-23. Types of Cryptocurrencies

 3. The Role of Smart Contracts:

Smart contracts are self-executing contracts with the terms of the

agreement directly written into code. They are integral to native

payments in Web3, as they automate and secure transactions

without the need for intermediaries. When a transaction is

initiated, the smart contract verifies the conditions of the

exchange and automatically transfers the funds once those

conditions are met. See Figure 1-24 for how payments work with

contracts.

For instance, in a decentralized lending platform, a smart

contract might automatically transfer collateral to the lender if the

borrower fails to repay the loan on time. This trustless mechanism

reduces the need for third-party arbitration and ensures that

transactions are completed according to predefined rules.

[IMAGE] payments-smart-contract

CHAPTER 1 WEB3

30

Figure 1-24. Smart Contracts in Payments

 Benefits over Traditional Payment Systems

Native payments in Web3 offer several advantages over traditional payment systems,

particularly in terms of speed, cost, security, and accessibility. Table 1-1 compares

traditional systems and native Web3 payment features.

CHAPTER 1 WEB3

31

Table 1-1. Benefits over Traditional Payment Systems

Feature Traditional Payment Systems Native Web3 Payments

Intermediaries It involves banks, payment processors,

and other third parties.

Peer-to-peer transactions directly on

the blockchain.

Transaction

Speed

Can take several days, especially for

cross-border payments.

Transactions settle within minutes,

regardless of location.

Fees High fees, including transaction,

processing, and currency conversion

fees.

Lower fees due to the elimination of

intermediaries.

Accessibility Limited access for the unbanked or

underbanked populations.

Accessible to anyone with an internet

connection.

Security Centralized databases are vulnerable to

cyberattacks and breaches.

Secured by cryptography and

decentralized networks.

Privacy Requires sharing personal data with

intermediaries.

Privacy-preserving, with minimal

personal data exposure.

Global Reach Subject to local banking regulations and

time zones.

Borderless and operates 24/7 globally.

Financial

Inclusion

Limited to users with access to banks or

financial institutions.

Provides financial services to

unbanked and underbanked

populations.

Transparency Transactions are not publicly visible;

there is limited transparency.

Transactions are recorded on a public

blockchain, ensuring transparency.

Fraud

Prevention

Relies on intermediaries to detect and

resolve fraud cases.

Blockchain immutability reduces risk,

but users must secure private keys.

 1. Speed and Efficiency:

Traditional payment systems often involve multiple

intermediaries, such as banks and payment processors, which can

slow down the transaction process. Cross-border payments, in

particular, can take days to settle due to the involvement of various

financial institutions.

CHAPTER 1 WEB3

32

In contrast, native payments using cryptocurrencies are processed

directly on the blockchain, often settling within minutes,

regardless of the transaction’s value or the participants’ locations.

This speed is especially beneficial for global commerce, where

time zones and banking hours can otherwise delay payments.

 2. Lower Transaction Costs:

The fees associated with traditional payment systems typically

include transaction fees, currency conversion fees, and service

charges imposed by intermediaries. Small businesses and

individuals who make frequent transactions can be especially hit

by these fees.

Native payments in Web3 significantly reduce these costs by

eliminating intermediaries. While there are still network fees (e.g.,

gas fees on the Ethereum network), these are generally lower

than the combined fees of traditional systems, especially for

international transactions. Additionally, new Layer 2 solutions and

alternative blockchains are further reducing these fees, making

native payments even more cost-effective.

 3. Increased Security and Privacy:

Security is a major concern in traditional payment systems, where

centralized databases holding sensitive information are prime

targets for cyberattacks. Breaches can lead to significant financial

losses and identity theft.

In Web3, native payments are secured through the decentralized

nature of blockchain technology and cryptographic protocols.

The immutability of transaction records makes it impossible for

malicious actors to alter or manipulate them. Furthermore, since

transactions do not require sharing personal information with

intermediaries, users’ privacy is better protected.

CHAPTER 1 WEB3

33

 4. Financial Inclusion:

One of the most profound benefits of native payments in Web3 is their

potential to increase financial inclusion. Traditional banking services

are inaccessible to billions of people worldwide due to factors such as

geographical location, lack of documentation, or high fees.

Cryptocurrencies, on the other hand, are accessible to anyone

with an internet connection. Native payments enable unbanked

and underbanked populations to participate in the global

economy, providing access to financial services that were

previously out of reach. This democratization of finance is one of

Web3’s most transformative promises.

 Case Studies and Examples

The practical application of native payments in Web3 is already visible across various

industries, showcasing the potential of this technology to revolutionize the way we

handle transactions.

 1. Decentralized Finance (DeFi):

DeFi platforms are leading the way in using native payments in

Web3. These platforms allow users to lend, borrow, trade, and

earn interest on cryptocurrencies without relying on traditional

banks or financial institutions. For example, platforms like Aave

and Compound enable users to deposit cryptocurrencies and

earn interest, with the entire process governed by smart contracts.

Figure 1-25 gives an overview of the DeFi ecosystem.

DeFi platforms often use stablecoins for transactions, providing

a stable medium of exchange within the ecosystem. The

transparency and efficiency of DeFi have attracted billions of

dollars in value, demonstrating the viability of native payments as

an alternative to traditional financial systems.

CHAPTER 1 WEB3

34

Figure 1-25. Overview of DeFi Ecosystem

 2. E-Commerce and Digital Goods:

Several e-commerce platforms and marketplaces are beginning

to accept cryptocurrencies as a form of payment, leveraging the

benefits of native payments. For instance, OpenSea, one of the

largest NFT marketplaces, allows users to buy, sell, and trade

digital assets using Ethereum. An example is shown in Figure 1-26

with OpenSea.

This integration of native payments enables seamless transactions

in the digital goods economy, where users can purchase

virtual real estate, digital art, and other unique assets with

cryptocurrencies. The use of native payments simplifies the

process and provides a secure way to verify and transfer

CHAPTER 1 WEB3

35

Figure 1-26. OpenSea Payment Flow

 3. Cross-Border Remittances:

Cross-border remittances are another area where native payments

are making a significant impact. Traditional remittance services

often involve high fees and long processing times, especially for

transfers to developing countries.

Cryptocurrencies offer a faster and cheaper alternative for sending

money across borders. For example, platforms like Ripple and

Stellar focus on facilitating cross-border payments with minimal

fees and near- instant settlement times. These solutions are

particularly valuable for migrant workers sending money home,

as they can save on fees and ensure their families receive funds

quickly. Remittance comparison is shown in Figure 1-27.

CHAPTER 1 WEB3

36

Figure 1-27. Traditional vs. Crypto Remittance

 Transparency

Transparency is a fundamental principle of Web3, driving toward a more open,

accountable, and fair digital ecosystem. Unlike the systems of Web2, where data is often

controlled by centralized entities with minimal control, Web3 leverages decentralized

technologies to ensure that transactions, code, and processes are visible and verifiable

by all participants. In this section, we will discuss the significance of transparency in

Web3, the importance of open-source development, and the advantages of transparent

transaction records for both users and developers.

 Open-Source Nature of Web3

One of the most important aspects of transparency in Web3 is the open-source nature of

its development. Open-source software (OSS) is software with source code that anyone

can inspect, modify, and improve. In the context of Web3, this approach is not just a

best practice but a necessity, as it allows communities to build, maintain, and trust

decentralized systems.

CHAPTER 1 WEB3

37

 1. Community-Driven Development:

In Web3, many protocols, platforms, and applications are

developed in the open, with source code made publicly available

on platforms like GitHub. This transparency allows developers

from around the world to contribute to the codebase, identify

bugs, suggest improvements, and ensure that the software behaves

as intended. The decentralized nature of Web3 means that these

contributions are often driven by the community, rather than by a

single entity or corporation.

This approach has many advantages. First, it leads to more

robust and secure code, as a diverse group of contributors can

inspect and evaluate the software. Second, it fosters innovation,

as developers can build on each other’s work, creating new

applications and features that might not have been possible within

a closed, proprietary system. Finally, it enhances trust among

users, who can verify that the software they are using is free from

malicious code or hidden functions.

 2. Governance and Transparency:

Many Web3 projects are governed through decentralized

autonomous organizations (DAOs), where decision-making is

transparent and participatory. In a DAO, governance decisions,

such as changes to protocol parameters or the allocation of

resources, are made collectively by token holders, with votes

recorded on the blockchain.

This transparent governance model ensures that no single entity

has unilateral control over the project and all stakeholders can see

how decisions are made and implemented. This is in contrast to

traditional corporations or platforms, which often have centralized

decision-making systems, limiting users’ understanding of how

policies are established or enforced.

CHAPTER 1 WEB3

38

 3. Open Audits and Security:

The open-source nature of Web3 also extends to security,

where transparency plays a crucial role in maintaining trust.

In traditional systems, security audits are often conducted by

internal teams or external firms, with the results shared only with

select stakeholders. In Web3, however, security audits are typically

conducted in the open, with audit reports made publicly available.

This transparency allows anyone to review the security posture

of a project, providing an additional layer of accountability. It

also enables the community to quickly identify and respond to

potential vulnerabilities, making Web3 platforms more resilient

and secure over time.

 Transparent Transaction Records

One of the defining features of Web3 is the transparency of transaction records. In

a decentralized network, every transaction is recorded on a public ledger, such as a

blockchain, where it can be viewed and verified by anyone. This level of transparency

offers significant advantages over traditional financial systems, where transaction data is

often hidden from public view.

 1. Immutable Ledgers:

In Web3, transactions are recorded on blockchain ledgers

that are immutable (Figure 1-28), meaning once a transaction

is confirmed, it cannot be altered or deleted. This creates a

permanent and transparent record of all transactions that have

occurred on the network.

The immutability and transparency of blockchain ledgers provide

several benefits. For one, they ensure accountability, as all actions

are publicly recorded and can be traced back to their origin.

This makes it much harder to commit fraud or engage in corrupt

practices, as any illicit activity would be immediately visible to the

network.

CHAPTER 1 WEB3

39

Additionally, transparent ledgers enhance trust between parties

who may not know or trust each other. In traditional systems,

intermediaries like banks or escrow services are often needed

to ensure that both sides of a transaction fulfill their obligations.

In Web3, however, the public nature of the blockchain allows

participants to independently verify that a transaction has been

completed as agreed, reducing the need for intermediaries.

Figure 1-28. Immutable Ledger in Blockchain

 2. Transparent Supply Chains:

One of the most promising applications of transparent transaction

records is in supply chain management. In traditional supply

chains, it can be difficult to trace the origin and movement of

goods, leading to issues like fraud, falsification, and inefficiency.

Web3 enables fully transparent supply chains by recording every

step of the process on a public ledger. From the sourcing of raw

materials to the final delivery of a product, each transaction can

be tracked and verified on the blockchain (Figure 1-29). This

transparency helps ensure that goods are authentic, ethically

sourced, and handled according to agreed-upon standards.

For example, a consumer purchasing a luxury item could verify

its authenticity by tracing its history on the blockchain, from the

manufacturer to the retailer. Similarly, companies could ensure

that their suppliers are adhering to ethical labor practices by

auditing the supply chain records. Traditional systems do not

allow for this level of transparency because supply chain data is

often hard to access.

CHAPTER 1 WEB3

40

Figure 1-29. Blockchain in Supply Chain

 3. Transparent Financial Systems:

Web3 also has the potential to create more transparent financial

systems. In traditional finance, the flow of money is often not

transparent because intermediaries control the movement of

funds and take a cut at every step. This can lead to a lack of

transparency, high fees, and potential conflicts of interest.

With Web3, all financial transactions are recorded on a public

blockchain, where they can be audited by anyone. This

transparency reduces the risk of corruption and fraud, as every

transaction is visible and traceable. It also lowers costs by

eliminating the need for intermediaries, making financial services

more accessible to a broader range of people.

Namely, decentralized finance (DeFi) platforms enable users

to lend, borrow, and trade assets without the need for banks or

brokers. All transactions are conducted transparently on the

blockchain, allowing users to see exactly how their funds are being

used and managed. This openness fosters trust and encourages

more people to participate in the financial system.

CHAPTER 1 WEB3

41

 Benefits for Users and Developers

The transparency inherent in Web3 offers significant benefits for both users and

developers, fostering a more open and accountable digital ecosystem.

 1. User Empowerment:

For users, transparency in Web3 means greater control over their

data, assets, and interactions. They can see how their information

is being used, how transactions are being processed, and how

decisions are being made within the platforms they use. This

contrasts with Web2, where users often have little visibility into

how their data is handled or how platforms operate.

This empowerment extends to financial transactions, where users

can independently verify the integrity of the systems they are

using. For instance, when using a DeFi platform, users can audit

the smart contracts that govern the platform to ensure that their

funds are secure and that the platform is operating as intended.

 2. Developer Accountability:

For developers, the transparency of Web3 encourages higher

standards of accountability and security. Since code and

transactions are visible to the public, developers are incentivized

to write secure, efficient, and trustworthy code. Any vulnerabilities

or malicious behavior can be quickly identified and exposed by

the community, which holds developers to a higher standard than

in traditional closed-source environments.

Moreover, transparency fosters collaboration and innovation

among developers. Open-source projects allow developers to

build on each other’s work, share knowledge, and contribute to

the improvement of the ecosystem as a whole. This collaborative

environment is a key driver of innovation in Web3, leading to the

rapid development of new tools, platforms, and applications.

CHAPTER 1 WEB3

42

 3. Building Trust:

Finally, transparency is essential for building trust in Web3. In a

decentralized environment where there is no central authority to

enforce rules or guarantee outcomes, trust is established through

transparency. Trust mechanisms are summarized in Figure 1-30.

Users and developers alike can see how systems operate, how

decisions are made, and how assets are managed, which creates

confidence in the integrity and fairness of the platform.

This trust is especially crucial in emerging markets and

communities where traditional institutions may be absent or

unreliable. Web3’s transparency can help bridge the trust gap,

providing a reliable and open alternative to traditional systems.

Figure 1-30. Building Trust in Decentralized Systems

CHAPTER 1 WEB3

43

 Driving Technologies

Web3 represents the next evolution of the internet, with decentralization, transparency,

and user control taking center stage. This transformation is driven by a set of innovative

technologies that fundamentally alter how data is stored, processed, and exchanged

across the internet. In this section, we will explore the key driving technologies behind

Web3, including blockchain, smart contracts, and decentralized storage and computing.

 Blockchain Technology

Blockchain is the foundational technology upon which Web3 is built. A basic

architecture is illustrated in Figure 1-31. It is a decentralized, distributed ledger that

records transactions across a network of computers, ensuring transparency, security,

and immutability.

 1. Decentralized Ledger:

At its core, a blockchain is a chain of blocks, each containing a list

of transactions. These blocks are linked together in chronological

order and secured using cryptographic techniques. The ledger

is decentralized, meaning it is maintained by a network of nodes

(computers) rather than a single central authority. Each node

in the network has a copy of the blockchain, and all copies are

synchronized and updated through a consensus mechanism.

This decentralization is crucial for Web3 because it removes the

need for a central authority to validate transactions or control

data. Instead, trust is established through the collective agreement

of the network participants, making the system resistant to

censorship, fraud, and manipulation.

CHAPTER 1 WEB3

44

Figure 1-31. Blockchain Technical Architecture

 2. Consensus Mechanisms:

Consensus mechanisms are algorithms used to achieve agreement

among the nodes in a blockchain network about the state of the

ledger. The most common consensus mechanisms in Web3 are

Proof of Work (PoW) and Proof of Stake (PoS), each with its own

strengths and trade- offs. Comparison is shown in Figure 1-32.

• Proof of Work (PoW): PoW is the original consensus mechanism

used by Bitcoin and several other cryptocurrencies. In PoW, nodes

(called miners) compete to solve complex mathematical puzzles.

The first node to solve the puzzle gets to add a new block to the

blockchain and is rewarded with cryptocurrency. PoW is secure but

energy-intensive, as it requires significant computational power.

• Proof of Stake (PoS): PoS is a more energy-efficient alternative

to PoW. In PoS, nodes (called validators) are chosen to add new

blocks based on the number of tokens they hold and are willing

to “stake” as collateral. Validators are incentivized to act honestly,

as they stand to lose their staked tokens if they attempt to cheat

the system. PoS reduces the energy consumption associated with

mining and allows for faster transaction processing.

In addition to PoW and PoS, other consensus mechanisms, such

as Delegated Proof of Stake (DPoS), Proof of Authority (PoA),

and Byzantine Fault Tolerance (BFT), are also being explored

and implemented within various Web3 platforms, each offering

different balances of security, scalability, and decentralization.

CHAPTER 1 WEB3

45

Figure 1-32. PoW vs. PoS

 3. Layer 2 Solutions:

As blockchain technology evolves, Layer 2 solutions have emerged

to address some of the scalability and speed issues associated

with traditional blockchain networks. Layer 2 refers to secondary

frameworks or protocols that are built on top of the existing

blockchain, enabling faster and cheaper transactions without

compromising security. Figure 1-33 shows examples of Layer 2

scaling.

Examples of Layer 2 solutions include:

• State Channels: State channels allow two parties to conduct

multiple transactions off-chain while only recording the final

state of the transactions on the blockchain. This reduces the

load on the main chain and significantly speeds up transaction

processing.

• Sidechains: Sidechains are independent blockchains that run

parallel to the main chain. They can process transactions and

smart contracts independently, reducing congestion on the main

network while still being able to interact with it.

CHAPTER 1 WEB3

46

• Rollups: Rollups bundle multiple transactions into a single

transaction that is then recorded on the main blockchain. This

allows for higher efficiency and lower costs, making blockchain

applications more scalable and effective.

Layer 2 solutions are essential for enabling Web3 to scale and

handle the increasing number of users and transactions without

sacrificing the principles of decentralization and security.

Figure 1-33. Examples of Layer 2 Solutions

 Smart Contracts

Smart contracts are self-executing contracts where the terms of the agreement are

written directly into code. They are one of the most powerful innovations driving Web3,

enabling decentralized applications (DApps) to operate autonomously and securely.

CHAPTER 1 WEB3

47

 1. How Smart Contracts Work:

Smart contracts run on blockchain networks, such as Ethereum,

and are executed automatically when predefined conditions are

met. See Figure 1-34 for smart contract workflow. For example,

a simple smart contract might transfer cryptocurrency from one

party to another once a specific condition, like a payment, is

fulfilled.

Because smart contracts are stored on a blockchain, they inherit

the properties of transparency, immutability, and security. Once

deployed, a smart contract cannot be altered, ensuring that

the established terms are enforced without the possibility of

manipulation or fraud.

Figure 1-34. Smart Contract Execution Flow

 2. Applications of Smart Contracts:

Smart contracts are crucial to many Web3 applications,

allowing for a variety of decentralized services. Some of the key

applications include:

CHAPTER 1 WEB3

48

• Decentralized Finance (DeFi): DeFi platforms use smart

contracts to create financial services, such as lending, borrowing,

trading, and investing, without the need for traditional banks or

intermediaries. For example, a DeFi platform might use smart

contracts to automatically match borrowers with lenders, set

interest rates, and distribute loans.

• NFT Marketplaces: Smart contracts are used to mint, buy,

sell, and transfer non-fungible tokens (NFTs) on blockchain

marketplaces. These contracts ensure that ownership of digital

assets is transferred securely and that creators can receive

royalties on future sales.

• Decentralized Exchanges (DEXs): DEXs use smart contracts to

facilitate the trading of cryptocurrencies directly between users,

without the need for a centralized exchange. These contracts

automate the process of matching buy and sell orders, ensuring

that trades are executed transparently and securely.

• Supply Chain Management: Smart contracts can be used to

automate and verify various stages of a supply chain, from

manufacturing to delivery. Consider the case of a smart contract:

it might automatically release payment to a supplier once a

shipment has been confirmed as delivered.

Smart contracts are revolutionizing how agreements are made

and enforced in the digital world, providing a secure, efficient, and

trustless way to interact in a decentralized environment. Real-

world uses are shown in Figure 1-35.

CHAPTER 1 WEB3

49

Figure 1-35. Real-World Use Cases of Smart Contracts

 Decentralized Storage and Computing

Decentralized storage and computing are critical components of the Web3 ecosystem,

enabling the distribution of data and processing power across a network of nodes rather

than relying on centralized servers. This decentralization enhances security, privacy and

resilience while reducing the risks associated with central points of failure.

 1. Decentralized Storage:

In traditional web architectures, data is typically stored on

centralized servers owned and operated by companies like

Google, Amazon, or Microsoft. This centralization creates

vulnerabilities, such as data breaches, censorship, and loss

of access if a server goes down or is compromised. Storage

differences are visualized in Figure 1-36.

CHAPTER 1 WEB3

50

Decentralized storage networks, such as IPFS (InterPlanetary File

System) and Arweave, offer an alternative by distributing data

across a network of nodes. In these systems, data is broken into

small pieces, encrypted, and distributed across multiple nodes.

This ensures that no single entity controls the data and that it

remains accessible even if some nodes go offline.

 2. Benefits of Decentralized Storage:

• Security and Privacy: Because data is encrypted and distributed,

it is much harder for hackers to access or compromise the

entire dataset. Additionally, users retain control over their data,

reducing the risk of unauthorized access or abuse by centralized

service providers.

• Censorship Resistance: Decentralized storage makes it difficult

for any single entity or government to censor or block access to

information. Since data is spread across many nodes, it remains

available even if some nodes are taken offline.

• Data Integrity: Decentralized storage systems often use content

addressing, where each piece of data is identified by a unique

cryptographic hash. This ensures that the data cannot be

modified, as any variation would change the hash and make the

data unrecognizable.

CHAPTER 1 WEB3

51

Figure 1-36. Decentralized Storage Architecture

 3. Decentralized Computing:

Decentralized computing refers to the distribution of

computational tasks across a network of nodes rather than relying

on a central server or data center. This approach is particularly

important for running decentralized applications (DApps) and

smart contracts at scale.

Platforms like Ethereum allow developers to deploy and execute

smart contracts across a decentralized network of nodes. However,

decentralized computing can also extend to more general-purpose

tasks, such as distributed machine learning, rendering, and data

analysis.

CHAPTER 1 WEB3

52

Projects like Golem and Filecoin are exploring decentralized

computing networks where users can rent out their unused

processing power or storage in exchange for cryptocurrency.

This creates a global, decentralized cloud computing market

where resources are allocated based on demand and users can

participate without needing access to large-scale infrastructure.

 4. Challenges and Future Developments:

While decentralized storage and computing offer many benefits,

they also present challenges, such as latency, cost, and scalability.

Decentralized networks often have higher latency compared to

centralized services, and the cost of storing or processing data can

be higher due to the redundancy and complexity of the systems.

However, ongoing developments in protocols, consensus

mechanisms, and incentive structures are addressing these

challenges, making decentralized storage and computing more

affordable for a wide range of applications. As these technologies

mature, they will play an increasingly important role in the Web3

ecosystem, enabling more resilient, secure, and user-controlled

digital infrastructure. Table 1-2 outlines the main challenges of

decentralized computing and their solutions.

CHAPTER 1 WEB3

53

Table 1-2. Challenges and Solutions in Decentralized Computing

Challenges Solutions

Latency Develop optimized protocols and consensus mechanisms to reduce delays in

processing.

Cost Introduce incentive structures and efficient resource allocation to lower costs.

Scalability Implement Layer 2 solutions like rollups, sidechains, and state channels to

enhance scalability.

Interoperability Develop standards and bridges to ensure compatibility between different

blockchain networks.

Data

Redundancy

Use advanced data distribution methods to balance redundancy with storage

efficiency.

Energy

Consumption

Shift from energy-intensive consensus mechanisms (e.g., PoW) to energy-

efficient ones (e.g., PoS).

Adoption

Barriers

Provide user-friendly interfaces and developer tools to lower the learning curve

for new users and developers.

Regulatory

Challenges

Collaborate with governments to create fair and adaptable legal frameworks for

decentralized computing.

 Application Types

Web3 has brought about a new age of internet applications that emphasizes

decentralization, transparency, and user empowerment. Unlike traditional web

applications, Web3 applications operate on decentralized networks, removing the

need for central authorities and giving users control over their data and interactions.

In this section, we will explore the different types of applications in Web3, focusing on

decentralized applications (DApps) and decentralized finance (DeFi) platforms.

CHAPTER 1 WEB3

54

 Decentralized Applications (DApps)

Decentralized applications, or DApps, are a core component of the Web3 ecosystem.

These applications run on blockchain networks and leverage smart contracts to operate

without a central authority. DApps can cover a wide range of use cases, from finance and

gaming to social media and governance.

 1. What Are DApps?

DApps are applications that run on a decentralized network

(Figure 1-37 shows DApp architecture), typically a blockchain

like Ethereum, rather than relying on a centralized server. The

backend code for DApps is stored on the blockchain, and their

operation is governed by smart contracts, self-executing contracts

with the terms of the agreement directly written into code.

The decentralized nature of DApps ensures that no single entity

controls the application, making it resistant to censorship,

downtime, and manipulation. Users interact with DApps through

a decentralized interface, often using a cryptocurrency wallet to

manage assets, identities, or access rights within the application.

CHAPTER 1 WEB3

55

Figure 1-37. Architecture of a DApp

 2. Characteristics of DApps:

DApps have several key characteristics that differentiate them

from traditional web applications (core features are listed in

Figure 1-38):

• Decentralization: The backend of a DApp is distributed across

a network of nodes, removing the need for a central server. This

enhances security and resilience, as there is no single point of

failure.

• Open Source: Many DApps are open-source, allowing anyone to

inspect, modify, and contribute to the codebase. This transparency

fosters trust and collaboration within the community.

CHAPTER 1 WEB3

56

• Incentivization: DApps often incorporate tokens or

cryptocurrencies to incentivize participation. Users may earn

tokens for contributing to the network, providing services, or

engaging in certain activities within the DApp.

• Smart Contracts: The logic of a DApp is governed by smart

contracts, which automatically execute actions based on

predefined conditions. This ensures that the application operates

in a trustless and transparent manner.

Figure 1-38. Key Features of DApps

 3. Examples of DApps:

DApps can be found across various sectors, each leveraging

the unique capabilities of blockchain technology to provide

innovative solutions (examples are summarized in Figure 1-39):

CHAPTER 1 WEB3

57

• Finance: DApps like Uniswap and Aave are popular in the

decentralized finance (DeFi) space. Uniswap is a decentralized

exchange (DEX) that allows users to trade cryptocurrencies

directly from their wallets, while Aave is a lending platform that

enables users to borrow and lend assets without intermediaries.

• Gaming: DApps such as Axie Infinity and Decentraland have

gained popularity in the gaming industry. Axie Infinity is a

blockchain-based game where players can collect, breed, and

battle virtual creatures called Axies, while Decentraland is a

virtual world where users can buy, sell, and develop virtual real

estate using cryptocurrency.

• Social Media: DApps like Steemit and Mastodon offer

decentralized alternatives to traditional social media platforms.

Steemit is a content-sharing platform that rewards users

with cryptocurrency for creating and curating content, while

Mastodon is a decentralized social network that allows users to

host their own servers and control their data.

• Governance: DApps like Aragon and Snapshot enable

decentralized governance for organizations and communities.

Aragon allows users to create and manage decentralized

autonomous organizations (DAOs), while Snapshot provides a

simple voting interface for DAOs to make decisions based on

token-holder votes.

CHAPTER 1 WEB3

58

Figure 1-39. Examples of DApps by Sector

 Decentralized Finance (DeFi) Platforms

Decentralized finance, or DeFi, represents one of the most transformative applications

of Web3. DeFi platforms offer a range of financial services, such as lending, borrowing,

trading, and investing, without the need for traditional banks or financial intermediaries.

These platforms operate on blockchain networks, providing users with greater control

over their assets and enabling financial inclusion on a global scale.

CHAPTER 1 WEB3

59

Figure 1-40. Overview of DeFi Ecosystem

 1. What Is DeFi?

DeFi refers to a broad category of financial applications that

are built on decentralized networks. These applications aim to

recreate traditional financial services, such as lending, borrowing,

trading, and insurance, using blockchain technology and smart

contracts. By eliminating intermediaries, DeFi platforms provide

more transparent, accessible, and efficient financial services.

 2. Key Components of DeFi:

DeFi platforms are composed of several key components, each

playing a critical role in the ecosystem:

• Decentralized Exchanges (DEXs): DEXs, such as Uniswap and

Sushiswap, enable users to trade cryptocurrencies directly from

their wallets without relying on a centralized exchange. Trades

are facilitated by automated market makers (AMMs) that use

smart contracts to match buy and sell orders.

CHAPTER 1 WEB3

60

• Lending and Borrowing Platforms: Platforms like Aave,

Compound, and MakerDAO allow users to lend their

cryptocurrencies to others and earn interest or borrow assets

by providing collateral. These platforms use smart contracts to

manage loans and ensure that all participants comply with the

agreed terms.

• Stablecoins: Stablecoins are cryptocurrencies that are linked to

the value of a fiat currency, such as the US dollar. They provide a

stable medium of exchange within the DeFi ecosystem, reducing

the volatility associated with other cryptocurrencies. Examples of

stablecoins include USDT (Tether), USDC (USD Coin), and DAI

(a decentralized stablecoin managed by MakerDAO).

• Yield Farming and Liquidity Mining: Yield farming and liquidity

mining are strategies used by DeFi users to earn rewards by

providing liquidity to platforms or staking tokens. For example,

users can provide liquidity to a DEX and earn a portion of the

trading fees or receive governance tokens as rewards.

• Derivatives and Synthetic Assets: DeFi platforms also offer

derivatives and synthetic assets that track the value of real-world

assets, such as stocks, commodities, or indices. Synthetix is an

example of a platform that enables users to create and trade

synthetic assets that mirror the price movements of traditional

financial instruments.

 3. Benefits of DeFi:

DeFi offers several advantages over traditional financial systems:

• Accessibility: DeFi platforms are open to anyone with an internet

connection and a cryptocurrency wallet, making financial services

available to individuals who are unbanked or underbanked.

• Transparency: All transactions on DeFi platforms are recorded

on the blockchain, providing a transparent and auditable record

of activity. This transparency reduces the risk of fraud and allows

users to verify the integrity of the system.

CHAPTER 1 WEB3

61

• Control: DeFi users retain full control over their assets, as they

interact directly with the platform via smart contracts. There are

no intermediaries that can freeze accounts or block transactions.

• Efficiency: DeFi platforms operate 24/7 and can process

transactions much faster than traditional banks. The use of smart

contracts also automates many processes, reducing the need for

manual intervention and lowering costs.

 4. Risks and Challenges:

Despite the benefits, DeFi is still an emerging field and comes with

its own set of risks and challenges:

• Smart Contract Vulnerabilities: Smart contracts are exposed

to bugs and vulnerabilities that can be used by malicious actors.

While code audits and security measures are improving, the risk

of hacks remains a concern.

• Regulatory Uncertainty: DeFi operates in a largely unregulated

environment, which can lead to legal and regulatory challenges.

Governments and regulators are still determining how to

approach DeFi, and future regulations could impact the growth

and operation of these platforms.

• Market Volatility: The cryptocurrency market is highly

unpredictable, and the value of assets on DeFi platforms can shift

significantly. Users must be aware of the risks associated with

price swings and potential liquidations of their collateral.

• User Responsibility: DeFi requires users to manage their own

private keys and interact directly with smart contracts. This level

of responsibility can be a challenge for beginners and increases

the risk of user error.

Table 1-3 compares the advantages of DeFi with the associated risks across key

aspects.

CHAPTER 1 WEB3

62

Table 1-3. Benefits and Risks of DeFi Platforms

Aspect Benefits Risks

Accessibility Open to anyone with an internet

connection and a cryptocurrency wallet.

Users may face technical barriers or

lack knowledge to use DeFi platforms

effectively.

Transparency All transactions are recorded on a public

blockchain, ensuring a transparent

system.

Transparency can expose sensitive

transaction data, leading to potential

privacy concerns.

Control Users retain full control over their funds

and interact directly with smart contracts.

User errors, such as losing private

keys, can result in the permanent loss

of funds.

Efficiency DeFi platforms operate 24/7, with

automated processes reducing

operational costs.

High network congestion can lead to

slower transactions and higher fees.

Yield Potential Users can earn interest, rewards, or

governance tokens through yield farming

or staking.

High market volatility can lead to

significant losses, especially for

inexperienced users.

Innovation DeFi drives innovation in financial

services, introducing new products and

services.

Lack of regulation may expose users to

scams, rug pulls, and other malicious

activities.

Smart

Contracts

Smart contracts automate transactions,

removing intermediaries and enhancing

trust.

Vulnerabilities in smart contracts

can be exploited, leading to hacks or

financial losses.

 5. Examples of DeFi Platforms:

Several DeFi platforms have gained significant traction and are

pioneering the development of decentralized financial services

(these platforms are shown in Figure 1-41):

• Uniswap: A decentralized exchange (DEX) that allows users

to trade Ethereum-based tokens directly from their wallets.

Uniswap uses an automated market maker (AMM) model, where

users provide liquidity to pools and earn fees from trades.

CHAPTER 1 WEB3

63

• Aave: A decentralized lending and borrowing platform that

allows users to lend their assets and earn interest or borrow

assets by providing collateral. Aave is known for its innovative

features, such as flash loans and credit delegation.

• MakerDAO: The platform behind DAI, a decentralized

stablecoin linked to the US dollar. MakerDAO allows users to

create DAI by locking up collateral (such as Ethereum) in smart

contracts. The stability of DAI is maintained through a system of

collateralization and governance by MKR token holders.

• Curve Finance: A decentralized exchange optimized for

stablecoin trading. Curve Finance provides low-slippage trading

and high liquidity for stablecoins and other assets with similar

price stability.

Figure 1-41. Popular DeFi Platforms

CHAPTER 1 WEB3

64

 Conclusion

Web3 represents a transformative shift in how we build and experience the internet. At

its core, it challenges the centralized norms of Web2 by introducing decentralization,

transparency, and user ownership as fundamental principles. In this chapter, we

explored the key characteristics that define Web3, from digital identity and native

payments to smart contracts, decentralized applications, and peer-to-peer networks.

We’ve seen how blockchain enables new forms of trust without intermediaries, how

NFTs and tokens empower digital ownership, and how decentralized finance reimagines

traditional economic systems. We also examined the risks, trade-offs, and challenges

that must be addressed as the ecosystem matures.

What makes Web3 compelling isn’t just the technology but the values it brings to the

table: openness, inclusivity, and empowerment. As the tools, protocols, and standards

continue to evolve, Web3 offers the foundation for a more equitable and participatory

digital landscape.

 Chapter Summary

Topic Key takeaways

Web evolution Web1 (static), Web2 (interactive & centralized), Web3 (decentralized & user-owned)

Key

characteristics

Decentralization, trustlessness, digital identity, interoperability, privacy

Security

foundations

Public/private keys, zero-knowledge proofs, decentralized governance

Digital

ownership

Enabled by blockchain and NFTs: users control content, assets and identity

Native payments Cryptocurrency enables peer-to-peer, trustless, borderless financial exchange

Transparency Open-source code, public ledgers, visible governance, immutable transactions

Driving

technologies

Blockchain, smart contracts, Layer 2, decentralized storage/computing

Application

types

DApps and DeFi platforms spanning finance, gaming, social media, and more

CHAPTER 1 WEB3

65
© Soumaya Erradi 2025
S. Erradi, Web3 Development with Angular, https://doi.org/10.1007/979-8-8688-1886-8_2

CHAPTER 2

Blockchain

Introduction

This chapter provides a comprehensive foundation for understanding blockchain

technology, the core innovation enabling decentralized applications in Web3. We begin

by exploring the structure and function of blockchains, from basic concepts to historical

milestones. You’ll learn how blockchain networks store data securely through distributed

ledgers, how consensus mechanisms such as Proof of Work and Proof of Stake ensure

trust without intermediaries, and how smart contracts add programmability to these

networks.

We’ll also cover emerging technologies and protocols that solve current limitations

and introduce you to key platforms shaping the space. Through this chapter, you’ll

develop the technical understanding necessary to engage confidently with blockchain-

based applications.

By the end of this chapter, you will be able to

• Describe the core architecture of blockchain systems.

• Distinguish between various consensus mechanisms and their

trade-offs.

• Identify key blockchain projects and their use cases.

• Explain transaction lifecycles and network incentives.

• Understand the value and challenges of decentralization.

• Recognize blockchain’s security fundamentals and vulnerabilities.

https://doi.org/10.1007/979-8-8688-1886-8_2#DOI

66

Introduction to Blockchain

Definitions and Basic Concepts

Blockchain is a distributed ledger technology that enables secure, transparent, and

immutable transactions across a decentralized network. It eliminates the need for

intermediaries, allowing direct peer-to-peer transactions, whether for transferring digital

assets like cryptocurrencies or recording any type of digital data, such as contracts, votes,

or identities.

At its core, a blockchain is a chain of blocks, each containing a collection of

transactions. These blocks are linked together using cryptographic hashes, ensuring that

the data within them is immutable. Once a transaction is recorded on the blockchain, it

cannot be altered or deleted, which provides a high level of security and trust. Figure 2-1

illustrates the basic structure of a blockchain.

Figure 2-1. Basic Structure of a Blockchain

The key concept behind blockchain is decentralization. Unlike traditional

centralized systems, where a single entity or authority maintains the ledger, blockchain

operates across a distributed network of nodes. Each node has a copy of the entire

blockchain, and all nodes work together to validate new transactions. This decentralized

nature ensures that no single point of failure exists, and it becomes difficult for bad

actors to tamper with the system.

Key Features of Blockchain:

 1. Decentralization: Instead of relying on a central authority,

blockchain relies on a network of nodes, all of which participate in

verifying and validating transactions.

CHAPTER 2 BLOCKCHAIN

67

 2. Immutability: Once data is added to the blockchain, it becomes

practically impossible to change, ensuring that records are

permanent and immutable.

 3. Transparency: All participants in the network can access the

same version of the blockchain, creating transparency and trust

among users.

 4. Security: Blockchain uses cryptographic techniques to secure

transactions and data, making it highly resistant to attacks

or fraud.

Figure 2-2 shows the core features that make blockchain secure and decentralized.

Figure 2-2. Key Features of Blockchain

Historical Background and Evolution

Blockchain technology was first conceptualized in 2008 by an anonymous person or

group known as Satoshi Nakamoto. The original purpose of blockchain was to serve as

the foundational technology for Bitcoin, a decentralized digital currency that eliminates

the need for financial institutions to mediate transactions.

CHAPTER 2 BLOCKCHAIN

68

Bitcoin’s blockchain was revolutionary because it addressed the double-spending

problem, preventing digital assets from being copied and spent multiple times. By

using a proof-of-work consensus mechanism, Bitcoin’s blockchain ensures that each

transaction is unique and verified by the network. This innovation marked the beginning

of decentralized finance and peer-to-peer digital currency.

Blockchain 1.0: Bitcoin and Cryptocurrencies

The first generation of blockchain technology, often referred to as Blockchain 1.0, was

focused primarily on enabling decentralized digital currencies like Bitcoin. Blockchain

1.0 was limited to handling simple transactions, primarily the transfer of cryptocurrency,

but it demonstrated the potential of decentralized systems.

Blockchain 2.0: Smart Contracts and Ethereum

The second phase of blockchain development, known as Blockchain 2.0, emerged with

the launch of Ethereum in 2015. Ethereum introduced the concept of smart contracts,

self-executing contracts with the terms of the agreement written into code. These smart

contracts expanded blockchain’s use cases beyond simple transactions to more complex

applications, such as decentralized applications (DApps), decentralized finance (DeFi),

and tokenization of assets.

Ethereum’s blockchain allowed developers to build decentralized applications

(DApps) on top of the network, creating an ecosystem where blockchain technology

could be used for a wide range of applications, including lending, insurance, and voting

systems.

Blockchain 3.0: Scalability and Interoperability

As blockchain adoption grew, scalability became a significant challenge. Bitcoin and

Ethereum, the two largest blockchain networks, struggled with network congestion and

high transaction fees as their user base expanded. Blockchain 3.0 refers to the current

phase of development, which focuses on addressing these challenges by creating more

scalable, efficient, and interoperable blockchains. The phases of blockchain evolution

are shown in Figure 2-3.

CHAPTER 2 BLOCKCHAIN

69

Technologies like Proof of Stake (PoS), Layer 2 solutions (such as Lightning

Network and Optimistic Rollups), and sharding aim to improve blockchain’s scalability.

Meanwhile, interoperability protocols are being developed to allow different blockchains

to communicate with each other seamlessly, enabling greater collaboration and cross-

chain transfers of assets.

Figure 2-3. Timeline of Blockchain Evolution

Key Players and Projects

Blockchain has seen the emergence of several key players and projects, each

contributing to the evolution of technology in different ways.

 1. Bitcoin (BTC): The first and most well-known blockchain, Bitcoin

is often referred to as “digital gold” due to its store-of-

value properties. Its primary function is to enable peer-to-peer

transactions without intermediaries. Bitcoin’s blockchain is

secured using Proof of Work (PoW), and while it is slow and

resource-intensive, it remains one of the most secure networks in

the world.

 2. Ethereum (ETH): As the second-largest blockchain, Ethereum

introduced smart contracts and decentralized applications

(DApps). It is the leading platform for decentralized finance

(DeFi) and non-fungible tokens (NFTs). Ethereum has recently

transitioned from Proof of Work to Proof of Stake with the

Ethereum 2.0 upgrade, which is expected to enhance scalability

and reduce energy consumption.

CHAPTER 2 BLOCKCHAIN

70

 3. Ripple (XRP): Ripple focuses on providing blockchain-

based solutions for cross-border payments and remittances.

Unlike Bitcoin and Ethereum, Ripple uses a unique consensus

mechanism known as the Ripple Protocol Consensus Algorithm

(RPCA), which allows for faster transaction processing and lower

fees. Ripple has established partnerships with several banks and

financial institutions.

 4. Polkadot (DOT): Polkadot is a blockchain platform designed to

enable interoperability between different blockchains. It allows

various blockchains to connect and share information, creating

an ecosystem of interconnected chains. Polkadot’s unique

architecture, known as parachains, allows it to handle many

transactions simultaneously, improving scalability.

 5. Cardano (ADA): Cardano is a blockchain platform that aims

to provide a more secure and scalable infrastructure for smart

contracts and decentralized applications. Developed with a

research-first approach, Cardano focuses on formal verification

and peer-reviewed academic research to ensure the security and

robustness of its platform.

 6. Solana (SOL): Solana is a high-performance blockchain known

for its speed and low transaction costs. It uses a unique consensus

mechanism called Proof of History (PoH), which enables fast

processing of transactions. Solana has gained significant adoption

in the DeFi and NFT spaces due to its scalability and efficiency.

 7. Chainlink (LINK): Chainlink is a decentralized oracle network

that connects smart contracts with real-world data. Smart

contracts typically operate within the blockchain ecosystem, but

they often require external data (such as price feeds, weather

conditions, or election results) to function. Chainlink solves

this problem by securely connecting off-chain data sources to

blockchain networks.

As summarized in Table 2-1, platform purposes and features are compiled from

primary sources and official documentation for each network.

CHAPTER 2 BLOCKCHAIN

71

Table 2-1. Key Blockchain Platforms

Platform Purpose Key Features

Bitcoin Digital currency and store of value. Peer-to-peer transactions, Proof of Work

consensus, high security, limited scalability.

Ethereum Smart contracts and decentralized

applications (DApps).

Smart contracts, ERC-20 tokens, transitioning

to Proof of Stake for scalability.

Ripple Blockchain for cross-border payments

and remittances.

Fast transactions, low fees, Ripple Protocol

Consensus Algorithm (RPCA).

Polkadot Interoperability between blockchains and

scalability.

Parachains architecture, cross-chain

communication, Proof of Stake.

Cardano Secure and scalable platform for DApps

and smart contracts.

Formal verification, research-first approach,

low energy consumption.

Solana High-speed, low-cost blockchain for DeFi

and NFTs.

Proof of History (PoH) consensus, high

throughput, low transaction costs.

Chainlink Decentralized oracle network to connect

smart contracts with off-chain data.

Real-world data feeds, secure off-chain

connectivity, scalable oracle solutions.

These projects and others continue to push the boundaries of what blockchain

technology can achieve, driving innovation across multiple industries.

Technology Overview

Blockchain technology is a sophisticated system composed of multiple layers and

components that work together to enable decentralized, secure, and immutable

transactions. This section will provide a detailed overview of the underlying technology

behind blockchain, covering its architecture, consensus mechanisms, and network

structure.

CHAPTER 2 BLOCKCHAIN

72

Blockchain Architecture

Blockchain architecture is the fundamental design of how the system works. At its core,

a blockchain consists of a series of blocks, each containing a collection of transactions.

These blocks are linked together in chronological order to form a chain, which explains

the term “blockchain.” Each block contains three key components (Figure 2-4):

 1. Data: The actual transactions or records being stored on the

blockchain. For a cryptocurrency like Bitcoin, this data could

represent the transfer of digital currency between users. In other

blockchain systems, it could store information like contracts,

identities, or asset ownership.

 2. Hash of the Previous Block: This is a cryptographic hash that

links the current block to the previous block in the chain. The hash

is a unique fingerprint of the block’s contents. By linking each

block to the previous one, blockchain ensures the immutability of

the ledger. Changing the data in any one block would invalidate

the hashes of all subsequent blocks.

 3. Nonce (Proof of Work Blockchains): A nonce is a random

number used in proof-of-work blockchains, like Bitcoin, to solve

cryptographic puzzles required to validate and add a block to

the chain. This process is key to ensuring the integrity of the

blockchain in proof-of-work systems.

CHAPTER 2 BLOCKCHAIN

73

Figure 2-4. Anatomy of a Blockchain Block

Blockchain’s Structure:

• Genesis Block: The first block of any blockchain, which serves as the

foundation of the entire chain. Every blockchain has a unique genesis

block, which initializes the blockchain’s operation.

• Merkle Tree: In many blockchains, transactions within a block are

arranged in a structure called a Merkle Tree, a binary tree where

each leaf node is a transaction hash, and parent nodes are hashes

of their child nodes. The root of this tree, known as the Merkle Root,

summarizes all transactions in the block, allowing for efficient and

secure verification of transaction integrity. Figure 2-5 demonstrates

the Merkle Tree used for transaction verification.

CHAPTER 2 BLOCKCHAIN

74

Figure 2-5. Merkle Tree Structure

• Distributed Ledger: Blockchain operates as a distributed ledger,

meaning that the entire database is maintained across multiple

nodes, or participants, in the network. Each node holds a copy of the

ledger, and consensus mechanisms ensure that all nodes agree on

the state of the blockchain.

Blockchain’s decentralized architecture ensures that no single point of control

exists, making it more secure, transparent, and resistant to manipulation compared to

traditional, centralized databases.

Consensus Mechanisms

A key feature of blockchain is the ability to achieve consensus across a distributed

network of participants. Consensus mechanisms are the protocols by which all

participants in the network agree on the validity of transactions and ensure that the

entire system maintains a consistent state. Different blockchains employ various

consensus mechanisms, with the most common being Proof of Work (PoW) and Proof of

Stake (PoS).

CHAPTER 2 BLOCKCHAIN

75

 1. Proof of Work (PoW):

Proof of Work (PoW) is the original consensus mechanism used

by Bitcoin and other early blockchains. In a PoW system, miners

compete to solve complex mathematical puzzles, and the first

one to solve the puzzle gets to add a new block to the blockchain.

The miner is then rewarded with cryptocurrency for their efforts.

The puzzle is difficult to solve, but the solution is easy for other

participants to verify.

PoW is highly secure and decentralized, but it requires significant

computational power and energy, which has raised concerns

about its environmental impact. The energy-intensive nature of

PoW has also limited the scalability of early blockchain networks

like Bitcoin, as processing large numbers of transactions is slow

and costly.

 2. Proof of Stake (PoS):

Proof of Stake (PoS) is an alternative consensus mechanism

designed to address some of the limitations of PoW, particularly

its energy consumption. In a PoS system, validators are selected

to propose new blocks based on the number of tokens they hold

and are willing to “stake” as collateral. Validators are incentivized

to act honestly because if they behave maliciously, they risk losing

their staked tokens.

PoS is more energy-efficient than PoW because it does not rely

on solving computational puzzles. It also tends to allow for faster

transaction processing. Ethereum, which started as a PoW blockchain,

recently transitioned to PoS as part of its Ethereum 2.0 upgrade.

 3. Delegated Proof of Stake (DPoS):

Delegated Proof of Stake (DPoS) is a variation of PoS in which

token holders vote to elect a small group of trusted validators,

known as delegates or witnesses, to create and validate new

blocks. DPoS increases efficiency by reducing the number of

nodes involved in the consensus process while maintaining

decentralization. Blockchains like EOS and TRON use DPoS.

CHAPTER 2 BLOCKCHAIN

76

 4. Proof of Authority (PoA):

Proof of Authority (PoA) is a consensus mechanism where

a small group of pre-approved validators are authorized to

produce blocks. PoA is often used in private or permissioned

blockchains, where trust among participants is higher. It offers

high transaction processing capacity and efficiency but sacrifices

some decentralization. PoA is suitable for enterprise blockchains

where permissioned participants are known entities.

 5. Other Consensus Mechanisms:

• Byzantine Fault Tolerance (BFT): Used in systems like

Hyperledger, BFT allows consensus to be reached even if some

nodes are acting maliciously or are unreliable.

• Proof of History (PoH): Used by Solana, PoH provides a

historical record that proves that an event occurred at a specific

moment in time, enabling greater scalability and fast processing.

Each consensus mechanism has its trade-offs, and blockchain projects choose

different mechanisms based on their use cases and scalability requirements.

Table 2-2 compares mainstream consensus mechanisms, synthesized from

foundational papers and protocol documentation, with examples drawn from the cited

networks.

Table 2-2. Comparison of Consensus Mechanisms

Consensus

Mechanism

Key Features Advantages Disadvantages Examples

Proof of Work

(PoW)

Miners solve

cryptographic

puzzles to validate

transactions.

High security,

decentralized,

resistant to attacks.

Energy-intensive, slow

transaction processing,

scalability issues.

Bitcoin,

Litecoin

Proof of

Stake (PoS)

Validators are

chosen based on

the number of

tokens staked.

Energy-efficient,

faster transaction

processing, scalable.

Can lead to

centralization

(wealthier users control

more of the network).

Ethereum 2.0,

Cardano

(continued)

CHAPTER 2 BLOCKCHAIN

77

Consensus

Mechanism

Key Features Advantages Disadvantages Examples

Delegated

Proof of

Stake (DPoS)

Token holders

vote for delegates

to validate

transactions.

More efficient

and faster than

PoS, democratic

governance.

Less decentralized due

to reliance on a small

number of delegates.

EOS, TRON

Proof of

Authority

(PoA)

A set of pre-

approved validators

create blocks.

High throughput,

energy-efficient,

ideal for private

blockchains.

Limited

decentralization relies

on trust in validators.

VeChain,

Binance

Smart Chain

Byzantine

Fault

Tolerance

(BFT)

Achieves consensus

even with malicious

or faulty nodes.

High fault tolerance,

suitable for

permissioned

blockchains.

Less efficient in large-

scale public networks.

Hyperledger

Fabric, Stellar

Proof of

History (PoH)

Provides a historical

record to prove an

event’s occurrence.

Increases scalability

and speeds up

processing in

conjunction with PoS.

Relatively new and less

tested compared to

other mechanisms.

Solana

Table 2-2. (continued)

Nodes and Network Structure

In a blockchain network, nodes are the individual participants that maintain a copy

of the blockchain and help validate new transactions. The structure and function of

nodes can vary, but they are crucial to the decentralized nature of blockchain. Figure 2-6

categorizes different types of nodes in a blockchain network.

 1. Types of Nodes:

• Full Nodes: Full nodes maintain a complete copy of the

blockchain and validate transactions according to the

blockchain’s consensus rules. In most public blockchains like

Bitcoin and Ethereum, full nodes help maintain the network’s

integrity by ensuring that all transactions and blocks follow the

protocol.

CHAPTER 2 BLOCKCHAIN

78

• Light Nodes (SPV Nodes): Light nodes, or Simplified Payment

Verification (SPV) nodes, do not store the entire blockchain.

Instead, they store only a portion of the blockchain’s data,

typically the block headers. Light nodes rely on full nodes to

validate transactions but can still participate in the network

without the need for extensive storage.

• Mining/Validator Nodes: In PoW blockchains, mining nodes are

responsible for solving cryptographic puzzles and proposing new

blocks. In PoS and DPoS systems, validator nodes are responsible

for validating and proposing new blocks based on the consensus

mechanism.

Figure 2-6. Types of Blockchain Nodes

 2. Peer-to-Peer (P2P) Network:

Blockchain operates on a peer-to-peer (P2P) network where all

nodes communicate directly with each other without a central

server. Each node in the network holds a copy of the blockchain

and participates in the consensus process.

CHAPTER 2 BLOCKCHAIN

79

• Decentralization: The P2P structure of blockchain ensures

decentralization. There is no central point of control, and no

single entity can take down the network. Even if some nodes go

offline, the blockchain continues to operate as long as most of the

nodes are functional.

• Broadcasting: When a transaction is initiated, it is broadcast

to the entire network. Nodes verify the transaction and add it to

the mempool (a pool of unconfirmed transactions). Figure 2-7

shows how nodes interact in a P2P network. Once a miner or

validator includes the transaction in a block, it is added to the

blockchain.

Figure 2-7. Peer-to-Peer Blockchain Network

 3. Forks and Upgrades:

A blockchain fork occurs when the rules governing the blockchain

are changed, resulting in a divergence of the blockchain into

two or more paths. Forks can be either soft forks (backward-

compatible upgrades) or hard forks (non-backward-compatible

upgrades).

CHAPTER 2 BLOCKCHAIN

80

• Soft Fork: A soft fork occurs when changes are made to the

protocol that are backward compatible. This means that nodes

running the old version of the software can still participate in the

network, but they are encouraged to upgrade to the new version.

An example of a soft fork is Bitcoin’s SegWit upgrade.

• Hard Fork: A hard fork results in a permanent split of the

blockchain. Nodes running the old version of the software are

no longer compatible with the new version. This creates two

separate chains with distinct rules. Figure 2-8 compares hard

forks and soft forks in blockchain. Ethereum’s hard fork following

the DAO hack in 2016 resulted in two blockchains: Ethereum

(ETH) and Ethereum Classic (ETC).

Figure 2-8. Hard Fork vs. Soft Fork

Understanding Blockchain Transactions

Blockchain transactions are the fundamental units of activity within a blockchain

network, enabling the transfer of assets, recording of data, and execution of smart

contracts. In this section, we will break down the lifecycle of a blockchain transaction,

explain how transactions are validated and verified, and discuss transaction fees and

incentives that drive participation in the network.

CHAPTER 2 BLOCKCHAIN

81

Transaction Lifecycle

The lifecycle of a blockchain transaction involves several stages, from its creation to its

confirmation and inclusion in a block. Each step is critical to ensuring the transaction’s

security, immutability, and validity. Figure 2-9 visualizes a transaction’s path from

creation to finality.

 1. Transaction Creation:

• A blockchain transaction is created when a user initiates an

action, such as sending cryptocurrency, invoking a smart

contract, or recording data on the blockchain. In cryptocurrency

networks like Bitcoin or Ethereum, the transaction typically

involves transferring coins or tokens from one address (sender)

to another address (receiver).

• The transaction contains several components, including

• Input: The source of funds or digital assets, such as the

sender’s wallet address or previous unspent transaction

output (UTXO)

• Output: The recipient’s wallet address or account, specifying

where the assets will be sent

• Amount: The quantity of digital assets being transferred

• Signature: A digital signature created using the sender’s

private key, which proves that the sender is authorized to

initiate the transaction

 2. Broadcasting to the Network:

• Once the transaction is created and signed, it is broadcast to

the blockchain network. In a peer-to-peer (P2P) network, the

transaction is propagated to all nodes that receive the broadcast.

These nodes verify the transaction for its accuracy (such as

ensuring the sender has sufficient funds and the digital signature

is valid).

CHAPTER 2 BLOCKCHAIN

82

• At this point, the transaction is considered unconfirmed, and it

waits in a memory pool (or mempool) until it can be included in

the next block.

 3. Validation and Verification:

• The transaction must be validated by the network. Different

blockchain networks employ different methods of validation,

depending on the consensus mechanism used (e.g., Proof of

Work or Proof of Stake).

• Validators (in Proof-of-Stake systems) or miners (in Proof-of-

Work systems) will check the following:

• Funds Availability: Ensure that the sender has sufficient

assets to complete the transaction.

• Signature Validity: Confirm that the transaction has been

signed by the rightful owner of the private key associated

with the sending address.

• Double-Spending Protection: Ensure that the transaction is not

attempting to spend the same funds more than once. Double-

spending is a critical issue in digital currencies, and blockchain’s

distributed consensus helps prevent this problem.

 4. Inclusion in a Block:

• Once validated, the transaction is included in a block by a

miner (PoW) or validator (PoS). The block contains multiple

transactions and is added to the blockchain in chronological

order. Each block references the previous one by including its

hash, ensuring the immutability of the chain.

• When the block containing the transaction is added to the

blockchain, the transaction is considered confirmed. Most

blockchain networks require a certain number of confirmations

(blocks added on top of the block containing the transaction)

before a transaction is considered fully final and irreversible. For

example, on the Bitcoin network, six confirmations are typically

required to ensure the transaction is secure.

CHAPTER 2 BLOCKCHAIN

83

 5. Finality:

• Once confirmed, the transaction becomes part of the permanent

blockchain record. It cannot be reversed or altered, ensuring

immutability. Both the sender and receiver can now see the

confirmed transaction in the blockchain ledger, and the assets

have been transferred.

Figure 2-9. Lifecycle of a Blockchain Transaction

Transaction Fees and Incentives

Blockchain transactions are typically subject to fees, which are paid by the sender to

incentivize miners or validators to include the transaction in the next block. Transaction

fees play a crucial role in ensuring the security and efficiency of the network while also

providing economic incentives for participants.

 1. Transaction Fees:

• Bitcoin Fees: On the Bitcoin network, transaction fees are

calculated based on the size of the transaction in bytes. Since

Bitcoin blocks have a limited size (currently 1 MB), miners prioritize

transactions with higher fees. Users can choose how much they

want to pay in transaction fees, with higher fees resulting in faster

confirmation times. If the network is congested, users may need to

pay higher fees to have their transactions confirmed quickly.

• Ethereum Fees: On Ethereum, transaction fees are based on gas,

which represents the computational effort required to process a

transaction. Gas fees fluctuate based on network demand, and

complex transactions (such as executing smart contracts) require

more gas. Similar to Bitcoin, users can choose how much gas

they are willing to pay, and transactions with higher gas fees are

prioritized by validators.

CHAPTER 2 BLOCKCHAIN

84

Table 2-3 presents illustrative fee ranges and fee-setting rules, based on protocol

fee models and widely used trackers/documentation; values vary over time with

network demand.

Table 2-3. Transaction Fees Across Blockchains

Blockchain/Layer Average

Transaction Fee

Fee Determination Impact on Users

Bitcoin (BTC) $1–$30 Fee based on transaction

size (in bytes).

High during congestion;

incentivizes larger payments.

Ethereum (ETH) $0.50–$50+ Determined by gas price

and complexity.

Can spike during high demand;

affects smart contract executions.

Ethereum Layer

2 (e.g., Optimistic

Rollups)

$0.01–$0.10 Aggregated transactions

processed off-chain.

Affordable for microtransactions;

scalable.

Solana (SOL) <$0.01 Flat fee for transactions. Highly affordable; suitable for

high-frequency trades.

Binance Smart

Chain (BSC)

~$0.10 Flat fee structure. Low fees; widely adopted for

DeFi and NFTs.

 2. Incentives for Miners and Validators:

Miners (in PoW) and validators (in PoS) are incentivized to secure

the network and validate transactions through the reward system.

These rewards come in two forms:

• Block Rewards: When a miner successfully mines a new block

(PoW) or a validator proposes a new block (PoS), they receive

a reward in the form of newly minted cryptocurrency. For

example, in Bitcoin, miners currently receive a reward for each

block they mine, though this reward is halved roughly every four

years (a process known as the “halving”).

• Transaction Fees: Miners and validators also receive the

transaction fees included in each block. As block rewards decrease

over time (especially in Bitcoin’s case), transaction fees become

CHAPTER 2 BLOCKCHAIN

85

a more important source of income for miners. Figure 2-10

illustrates how miners and validators are incentivized.

Figure 2-10. Block Rewards and Transaction Fees

 3. Fee Market Dynamics:

• Transaction fees can fluctuate based on the supply and demand

for block space. When the network is congested (e.g., during

periods of high demand for transactions or smart contract

executions), fees can rise significantly as users compete to have

their transactions included in the next block.

• Blockchains are also exploring solutions to lower fees and

increase scalability, such as layer 2 technologies like Bitcoin’s

Lightning Network or Ethereum’s rollups, which bundle multiple

transactions together before recording them on the main

chain. Figure 2-11 presents techniques to improve blockchain

scalability.

CHAPTER 2 BLOCKCHAIN

86

Figure 2-11. Layer 2 Scaling Solutions

The Principle of Decentralization

Decentralization is one of the foundational principles of blockchain technology and

Web3, making it unique compared to traditional centralized systems. By removing the

need for a central authority, decentralization increases security, transparency, and

user control. In this section, we will define decentralization, explore its benefits over

centralized systems, and discuss the challenges and trade-offs involved in adopting

decentralized architectures.

Definition and Importance

Decentralization refers to the distribution of authority, control, and decision-making

across a network of participants, rather than concentrating it within a single entity or

central authority. In the context of blockchain, decentralization means that no single

party has complete control over the network or its data. Instead, control is distributed

across nodes that maintain the network, verify transactions, and reach consensus on the

state of the blockchain.

CHAPTER 2 BLOCKCHAIN

87

In a decentralized system, power is distributed more equitably, reducing the risk

of corruption, fraud, and censorship. Unlike centralized networks, where a single

organization or individual can make unilateral decisions, decentralized networks

operate on a consensus basis. This means that decisions, such as verifying transactions

or updating the protocol, require agreement from a majority of participants.

As illustrated in Figure 2-12, adapted from Baran’s seminal work on distributed

communications networks (Baran, 1964), the contrast between centralized,

decentralized, and distributed architectures highlights how control and decision-making

authority can shift across network structures.

Figure 2-12. Centralized vs. Decentralized vs. Distributed Networks

Key Features of Decentralization:

 1. Distributed Ledger: The blockchain itself is a decentralized

ledger, meaning it is maintained across multiple nodes, each

holding a copy of the data. This redundancy ensures that the

system is resilient to failures or attacks.

 2. No Central Authority: In a decentralized network, there is no

single entity that controls or governs the system. This lack of

central authority helps protect against censorship, corruption,

and abuse by any single party.

 3. Consensus Mechanisms: Decentralized systems use consensus

mechanisms to validate transactions and reach agreement on the

current state of the blockchain. These mechanisms ensure that all

participants have a voice in maintaining the network.

 4. Security and Transparency: Decentralization enhances both

security and transparency by distributing control among a large

number of participants. This makes it difficult for any single actor

to manipulate the system or alter records.

CHAPTER 2 BLOCKCHAIN

88

Decentralization is critical to the trustless nature of blockchain systems. Participants

can engage in transactions, share data, or use decentralized applications (DApps)

without needing to trust a central authority to act as an intermediary. This trustless

environment reduces reliance on third parties and gives users greater autonomy.

The benefits summarized in Table 2-4 reflect the canonical literature on

decentralization and network topology, together with contemporary analyses of

blockchain governance.

Table 2-4. Benefits of Decentralization

Feature Description Significance

Distributed

Ledger

Blockchain is maintained across multiple nodes,

each holding a copy of the data. This redundancy

ensures resilience against failures or attacks.

Ensures system reliability and

data availability even if some

nodes go offline.

No Central

Authority

There is no single entity controlling or governing

the system. This prevents censorship, corruption, or

abuse by any single party.

Protects against centralized

abuse of power and ensures

user autonomy.

Consensus

Mechanisms

Used to validate transactions and reach agreement

on the current state of the blockchain. These

mechanisms give all participants a voice.

Ensures fairness, trust, and

consistency in the network’s

operation.

Security and

Transparency

Decentralization enhances security by distributing

control among many participants, making it difficult

for a single actor to alter records.

Builds trust and ensures

tamper-proof, verifiable

transactions.

Benefits over Centralized Systems

Decentralization offers several advantages over traditional centralized systems, particularly

in terms of security, control, and resilience. These benefits make decentralized technologies

attractive for a wide range of applications, from finance and supply chain management to

social media and governance. Figure 2-13 illustrates key advantages of decentralization.

 1. Increased Security and Resilience:

• In a centralized system, a single point of failure can lead to

catastrophic consequences, such as data breaches, system

failures, or censorship. If the central authority is compromised or

corrupted, the entire network may be vulnerable.

CHAPTER 2 BLOCKCHAIN

89

• In contrast, decentralized systems are inherently more secure

because there is no central point of failure. Even if some nodes in

the network are attacked or go offline, the blockchain continues

to operate as long as a majority of nodes remain functional.

This resilience makes decentralized networks highly resistant to

hacking, fraud, and other malicious activities.

 2. Censorship Resistance:

• Centralized systems are vulnerable to censorship because a

single authority can control what information is shared, who

can participate, or how users can interact with the system.

Governments or corporations may suppress certain voices, block

access to services, or manipulate content.

• Decentralized systems are much harder to censor. Since control

is distributed among many participants, no single entity can

prevent users from accessing the network or censor specific

transactions or information. This feature makes decentralized

networks perfect for use cases that prioritize freedom of speech,

access to information, and privacy.

 3. Enhanced User Control and Ownership:

• In centralized systems, users often have limited control over their

data and assets. Centralized platforms may collect, store, and

even sell user data without explicit consent. Moreover, users rely

on intermediaries to manage assets, transactions, and services.

• Decentralized systems give users full control over their data,

identities, and assets. With blockchain-based platforms, users

own their private keys, which give them direct access to their

assets (cryptocurrency, NFTs, etc.) without needing a third party.

This level of control enhances privacy and reduces the risks

associated with centralized data storage.

CHAPTER 2 BLOCKCHAIN

90

 4. Transparency and Trust:

• Centralized systems often operate without transparency, with

decisions and processes hidden from public view. This lack of

transparency can lead to distrust among users, especially in cases

where central authorities have abused their power.

• Decentralized systems, particularly public blockchains, are fully

transparent. All transactions are recorded on a public ledger,

which is visible to anyone. This transparency builds trust among

users, as they can independently verify the integrity of the system

and the transactions that occur within it.

 5. Elimination of Intermediaries:

• In centralized systems, intermediaries like banks, payment

processors, or service providers are necessary to facilitate

transactions, manage services, or verify identities. These

intermediaries introduce inefficiencies, add costs, and can

become single points of failure.

• Decentralized systems eliminate the need for intermediaries by

relying on peer-to-peer networks and automated smart contracts.

For example, decentralized finance (DeFi) platforms allow users

to lend, borrow, or trade assets directly with one another without

relying on banks or brokers.

CHAPTER 2 BLOCKCHAIN

91

Figure 2-13. Benefits of Decentralization

Challenges and Trade-Offs

While decentralization offers significant advantages, it also presents several challenges

and trade-offs. These issues must be carefully considered when designing or adopting

decentralized systems. Figure 2-14 outlines the main trade-offs in decentralized systems.

 1. Scalability:

• One of the biggest challenges facing decentralized systems is

scalability. Public blockchains like Bitcoin and Ethereum have

struggled with scaling as their user base grows. Since every

node in the network must process and store every transaction,

decentralized networks can become slow and congested, leading

to higher transaction fees and longer confirmation times.

CHAPTER 2 BLOCKCHAIN

92

• Solutions such as layer 2 scaling technologies (e.g., Lightning

Network, rollups) and sharding are being developed to improve

scalability, but achieving global scalability while maintaining

decentralization remains a key challenge.

 2. Energy Consumption:

• Proof of Work (PoW) consensus mechanisms, like those used in

Bitcoin, are energy intensive. Miners compete to solve complex

puzzles, which require significant computational power and

electricity. This has raised concerns about the environmental

impact of blockchain technology.

• Proof of Stake (PoS) and other consensus mechanisms, such as

Proof of Authority (PoA) or Delegated Proof of Stake (DPoS), offer

more energy-efficient alternatives, but the environmental impact

of large-scale decentralized systems is still a topic of debate.

 3. Governance:

• Decentralized systems rely on distributed governance models,

such as Decentralized Autonomous Organizations (DAOs), to

make decisions about protocol updates, security, and resource

allocation. While these models promote inclusivity and

transparency, they can also lead to decision-making delays,

particularly when there are disagreements among participants.

• Achieving a balance between decentralized governance and

efficient decision-making is a continuous challenge for many

blockchain projects.

 4. User Experience:

• For most users, interacting with decentralized systems

can be more complex than using centralized platforms.

Managing private keys, understanding gas fees, and navigating

decentralized interfaces can be challenging for those unfamiliar

with blockchain technology.

CHAPTER 2 BLOCKCHAIN

93

• Improving the user experience (UX) in decentralized applications

(DApps) and wallets is critical to increasing adoption and making

decentralized systems more accessible to the public.

 5. Regulation and Compliance:

• Decentralized systems often operate outside of traditional

regulatory frameworks, which can create uncertainty for both

users and developers. Governments are still determining how

to regulate blockchain technologies, particularly in areas like

decentralized finance (DeFi), privacy, and data security.

• Finding a balance between decentralization and regulatory

compliance is a challenging issue that will influence the future of

blockchain adoption.

Figure 2-14. Challenges of Decentralization

CHAPTER 2 BLOCKCHAIN

94

Blockchain Security

Blockchain security is a critical aspect of technology, as it ensures that the decentralized

system remains robust, reliable, and resistant to attacks. Security is achieved through a

combination of cryptographic techniques, consensus mechanisms, and decentralized

network architecture. This section examines different aspects of blockchain security,

such as cryptographic methods, network security mechanisms, and case studies of

security vulnerabilities and their solutions.

Cryptographic Security

Cryptography is the foundation of blockchain security. It ensures the integrity of

transactions, protects user privacy, and secures the network from malicious attacks. The

key cryptographic techniques used in blockchain include hashing, digital signatures,

and public-key cryptography.

 1. Hash Functions:

A hash function takes an input (such as a transaction) and

generates a fixed-size string of characters, typically a unique

alphanumeric identifier called a hash. Even a small change in

the input will result in a completely different hash. In blockchain,

hash functions are used for:

• Block Hashing: Each block in the blockchain contains a hash of

the previous block, creating a chain of blocks. This ensures the

immutability of the blockchain. Changing a single block’s data

would require changing the hashes of all subsequent blocks,

making unauthorized changes nearly impossible. Figure 2-15

shows how hash functions secure blockchain data.

• Transaction Verification: Hash functions are used to create

Merkle Trees, where individual transactions are hashed and

combined to form a Merkle Root. This allows for efficient

verification of transactions within a block without needing to

check the entire block.

Popular cryptographic hash functions used in blockchain include

SHA-256 (used by Bitcoin) and Keccak-256 (used by Ethereum).

CHAPTER 2 BLOCKCHAIN

95

Figure 2-15. Cryptographic Hash Function

 2. Digital Signatures:

Digital signatures provide a way to verify the authenticity of

transactions without revealing the sender’s private key. In

blockchain, digital signatures are generated using public-key

cryptography, where each user has a pair of cryptographic keys:

• Public Key: This key is shared with the network and is used to

verify the digital signature of a transaction.

• Private Key: This key is kept secret and is used to sign

transactions. The private key generates a unique digital signature

for each transaction, proving that the transaction was initiated by

the legitimate owner without revealing the private key itself.

Figure 2-16. Digital Signature Process

CHAPTER 2 BLOCKCHAIN

96

Digital signatures ensure that transactions are both secure and

verifiable, meaning that the sender cannot deny initiating the

transaction. If the signature matches the public key associated

with the sender’s wallet, the network confirms that the transaction

is valid. Figure 2-16 explains the role of digital signatures.

 3. Public-Key Cryptography:

Public-key cryptography (also known as asymmetric

cryptography) is used to secure transactions and maintain

user privacy in blockchain networks. Each participant in the

blockchain has a public-private key pair. Public keys are used to

receive funds, while private keys are used to sign transactions and

access the funds.

• Security of Private Keys: The security of a blockchain relies

on the protection of private keys. If a user’s private key is

compromised, the attacker can take control of the user’s assets.

This makes key management critical, as users must securely

store their private keys (often using hardware wallets, encrypted

storage, or seed phrases).

 4. Elliptic Curve Cryptography (ECC):

Many blockchain networks use Elliptic Curve Cryptography

(ECC), which is a form of public-key cryptography. ECC provides

the same level of security as other cryptographic methods but

with smaller key sizes, making it more efficient in terms of

computation and storage. Bitcoin and Ethereum both use ECC to

secure transactions.

Network Security Mechanisms

In addition to cryptographic techniques, blockchain networks employ several security

mechanisms to protect the network from attacks, maintain consensus, and ensure the

integrity of the ledger. These mechanisms include consensus algorithms, decentralized

node architecture, and defense against common attack methods.

CHAPTER 2 BLOCKCHAIN

97

 1. Consensus Mechanisms and Security:

Consensus mechanisms play a vital role in maintaining the

security and trustworthiness of the blockchain. They ensure that

all participants agree on the state of the ledger and that only valid

transactions are added to the blockchain.

• Proof of Work (PoW): PoW secures the network by requiring

miners to solve complex computational puzzles to validate

transactions. This process makes it difficult for an attacker to

alter the blockchain, as it would require controlling over 50%

of the network’s hashing power (a “51% attack”). The immense

computational resources needed to carry out such an attack

make PoW-based blockchains, like Bitcoin, highly secure.

• Proof of Stake (PoS): PoS secures the network by requiring

validators to stake a certain amount of cryptocurrency to

participate in block validation. Validators are incentivized to act

honestly because malicious behavior can result in the loss of

their staked assets. This reduces the risk of attacks compared to

PoW, as validators have a financial interest in maintaining the

security and integrity of the blockchain.

• Byzantine Fault Tolerance (BFT): BFT consensus mechanisms,

such as those used in Hyperledger and Tendermint, secure the

network even when some nodes act maliciously or fail. BFT

ensures that honest nodes can reach consensus and continue

operating, even in the presence of faulty or compromised nodes.

 2. Decentralized Network Architecture:

Blockchain’s decentralized architecture contributes significantly

to its security. By distributing the ledger across many nodes,

blockchain reduces the risk of a single point of failure and makes

it difficult for an attacker to compromise the entire system.

• Distributed Trust: In centralized systems, trust is placed

in a single entity, such as a bank or a service provider. In

decentralized blockchain networks, trust is distributed among

many participants, making it harder for any single actor to

manipulate the system or compromise security.

CHAPTER 2 BLOCKCHAIN

98

• Fault Tolerance: A decentralized network is naturally more resilient

because the system can continue operating even if some nodes fail or

are attacked. This resilience ensures the network stays operational,

which is crucial for applications like financial transactions or supply

chains where continuous availability is essential.

 3. Common Attack Vectors:

While blockchain networks are generally secure, they are still

vulnerable to specific types of attacks. Some common attack

vectors include:

• 51% Attack: In a 51% attack, a malicious actor gains control of

more than 50% of the network’s computational power (in PoW)

or staked assets (in PoS). With this majority control, the attacker

can manipulate the blockchain, such as by reversing transactions

(double spending) or censoring new transactions. While

technically possible, such attacks are difficult to execute on large,

well-established blockchains like Bitcoin and Ethereum due to

the prohibitive costs involved.

• Sybil Attack: A Sybil attack occurs when an attacker creates

multiple fake identities (or nodes) to gain disproportionate

influence over the network. Many blockchain networks use

reputation systems or proof mechanisms to mitigate Sybil attacks.

• Distributed Denial of Service (DDoS): A DDoS attack involves

overwhelming a network or node with an excessive amount

of traffic, causing it to slow down or become unavailable.

Blockchain’s decentralized architecture helps mitigate the impact

of DDoS attacks, as multiple nodes can handle the load and

ensure the network remains operational.

• Smart Contract Vulnerabilities: While blockchain itself is

secure, smart contracts running on the blockchain can contain

vulnerabilities if not properly coded. Attackers can exploit these

vulnerabilities to drain funds, manipulate contract behavior, or

perform other malicious actions. Smart contracts should receive

detailed audits to ensure their security.

CHAPTER 2 BLOCKCHAIN

99

Table 2-5. Blockchain Attack Vectors and Mitigations

Attack

Vector

Description Example Prevention Measures

51% Attack A malicious actor gains

control of over 50% of the

network’s mining power

or stake, allowing them to

double-spend or censor

transactions.

Bitcoin Gold suffered

a 51% attack in 2018,

leading to the theft of

over $18 million.

Use robust consensus

mechanisms like Proof

of Stake or implement

checkpointing.

Sybil

Attack

An attacker creates multiple

fake identities or nodes to

gain influence or disrupt the

network.

Peer-to-peer networks

without proper identity

validation are vulnerable

to this type of attack.

Use reputation systems,

proof mechanisms, or

node authentication to

mitigate risks.

DDoS

Attack

Overwhelming a network

or node with excessive

traffic, causing delays or

unavailability.

Ethereum and Bitcoin

have experienced DDoS

attacks targeting mining

pools.

Decentralized architecture

and rate-limiting

mechanisms can help

mitigate DDoS attacks.

Smart

Contract

Exploits

Exploiting vulnerabilities

in smart contract code to

drain funds, manipulate

functionality, or disrupt

operations.

The DAO hack on

Ethereum in 2016 led to

the theft of $50 million

in ETH.

Conduct rigorous smart

contract audits, use

formal verification, and

implement upgradeable

smart contract

frameworks.

Private Key

Theft

Stealing private keys to gain

unauthorized access to users’

assets or wallets.

Individual users or

exchanges targeted

by phishing attacks or

malware.

Encourage the use of

hardware wallets, multi-

signature wallets, and

secure storage practices.

(continued)

Table 2-5 consolidates common attack vectors and mitigations from academic

surveys and incident reports, including historical cases such as the Bitcoin Gold 51%

attack and the DAO exploit.

CHAPTER 2 BLOCKCHAIN

100

Table 2-5. (continued)

Attack

Vector

Description Example Prevention Measures

Routing

Attacks

Intercepting blockchain data

during transmission between

nodes, potentially leading to

double-spending or delayed

consensus.

ISPs redirecting or

monitoring blockchain

traffic to tamper with

communication.

Use encryption protocols,

virtual private networks

(VPNs), and redundant

network pathways.

Eclipse

Attack

Isolating a node by controlling

all its connections to

the network, enabling

manipulation of the node’s

view of the blockchain.

Rare but theoretically

possible in smaller

networks.

Encourage diverse

and redundant peer

connections for nodes and

randomize peer selection.

Social

Engineering

Tricking users into revealing

private keys, passwords,

or sensitive information

through phishing or deceptive

practices.

Numerous

phishing attacks

on cryptocurrency

exchanges or wallet

providers.

Educate users, implement

two-factor authentication

(2FA), and use anti-

phishing tools.

Case Studies of Security Breaches and Solutions

While blockchain is generally considered secure, there have been notable cases of

security breaches, often due to vulnerabilities in smart contracts, exchange platforms,

or poor key management. Understanding these breaches helps in improving blockchain

security moving forward.

 1. The DAO Hack (Ethereum, 2016):

In one of the most infamous security breaches, a vulnerability in a

decentralized autonomous organization (DAO) built on Ethereum

was taken advantage of, resulting in the theft of 3.6 million ETH

(worth approximately $50 million at the time). The attacker

leveraged a vulnerability in the DAO’s smart contract, which

enabled them to withdraw funds from the DAO multiple times

before the system could update its balance.

CHAPTER 2 BLOCKCHAIN

101

• Solution: The Ethereum community decided to implement a hard

fork to reverse the effects of the hack and return the stolen funds to

the rightful owners. This hard fork led to the creation of two separate

blockchains: Ethereum (ETH) and Ethereum Classic (ETC), with the

second choosing to maintain the original, immutable chain.

 2. The Bitcoin Gold 51% Attack (2018):

In May 2018, Bitcoin Gold, a fork of Bitcoin, suffered a 51% attack.

The attacker gained control of more than 50% of the network’s

hashing power and used it to reverse transactions, allowing them

to double-spend coins. The attacker managed to steal over $18

million worth of Bitcoin Gold by exploiting this vulnerability.

• Solution: The Bitcoin Gold team worked to address the vulnerability

by upgrading its mining algorithm and enhancing its defenses

against 51% attacks. However, the incident highlighted the risks that

smaller blockchains face compared to more established networks

like Bitcoin and Ethereum.

 3. The Parity Wallet Exploit (Ethereum, 2017):

In November 2017, a vulnerability in the Parity multi-

signature wallet contract was utilized, leading to the freezing of

approximately 513,000 ETH (worth around $150 million at the

time). A user accidentally triggered a defect in the wallet contract,

leaving all funds stored in affected wallets inaccessible.

• Solution: The Ethereum community debated how to resolve the

issue, but ultimately no hard fork or solution was implemented

to recover the funds. The incident highlighted the importance of

auditing smart contracts and ensuring that they are rigorously tested

for security.

CHAPTER 2 BLOCKCHAIN

102

Conclusion

Blockchain is the foundation upon which most Web3 technologies are built. In this

chapter, we explored its inner workings, from blocks and hash functions to nodes,

networks, and consensus protocols. We examined how mechanisms like Proof of Work

and Proof of Stake secure decentralized systems and how smart contracts unlock

programmable functionality that goes far beyond simple value transfers.

While blockchain offers transparency, immutability, and security, it also faces

important limitations: scalability issues, energy consumption, and regulatory

uncertainty, among others. These are being addressed through innovations like Layer

2 protocols, modular architectures, and evolving governance models. As the ecosystem

matures, developers and architects must understand these trade-offs in order to design

reliable and efficient Web3 applications.

Chapter Summary

Topic Key takeaways

Blockchain

fundamentals

Blocks are chained with cryptographic hashes to ensure tamper-proof

records.

Distributed ledger Each node stores the entire ledger, ensuring transparency and resilience.

Consensus

mechanisms

PoW and PoS secure the network and validate transactions without central

control.

Smart contracts Programmable contracts that self-execute when conditions are met.

Scalability

solutions

Layer 2 solutions and sharding improve performance and reduce fees.

Major platforms Projects like Bitcoin, Ethereum, and Polkadot offer different use-case focuses.

Decentralization Promotes security, censorship resistance, and user ownership.

Security

considerations

Blockchain security is enforced by cryptography and consensus;

vulnerabilities still exist.

CHAPTER 2 BLOCKCHAIN

103
© Soumaya Erradi 2025
S. Erradi, Web3 Development with Angular, https://doi.org/10.1007/979-8-8688-1886-8_3

CHAPTER 3

Use Cases

 Introduction

Blockchain technology has evolved from being the foundation of cryptocurrencies

like Bitcoin to becoming a versatile solution for multiple industries. The unique

characteristics of it, such as decentralization, transparency, immutability, and security,

have opened up new possibilities in multiple domains, from finance to healthcare,

supply chains, and governance.

Blockchain has many potential applications due to its revolutionary approach to

recording, verifying, and sharing data. Trust is established through cryptography and

consensus mechanisms in blockchain, unlike traditional systems that rely on centralized

authorities. Innovative use cases have been enabled in various industries due to this

paradigm shift, which has addressed long-standing challenges, including inefficiencies,

lack of transparency, fraud, and high operational costs.

This chapter explores the practical use cases of blockchain technology and

categorizes them into key application areas. Our goal is to demonstrate the power of

blockchain to drive innovation and solve complex problems by examining real-world

examples and implementations.

 Blockchain Applications

The ability to create systems that are more secure, efficient, and equitable is what

blockchain applications have in common across a wide range of industries. Blockchain

can transform the way information and value are exchanged, from enabling

decentralized finance (DeFi) platforms to revolutionizing supply chain management.

https://doi.org/10.1007/979-8-8688-1886-8_3#DOI

104

Key areas of blockchain applications (Figure 3-1):

 1. Finance: Blockchain is revolutionizing the financial industry

through its use in decentralized finance, cross-border payments,

and peer-to-peer lending.

 2. Currency: Cryptocurrencies, stablecoins, and central bank digital

currencies (CBDCs) are redefining how money is created, stored,

and transferred.

 3. Property Records: Blockchain provides an immutable and

transparent way to manage property ownership and land

registries, reducing fraud and inefficiency.

 4. Smart Contracts: The automation of complex agreements by

these self-executing contracts enables use cases in industries such

as insurance, real estate, and logistics.

 5. Supply Chains: Blockchain enhances the transparency and

traceability of supply chains, which ensures ethical sourcing and

quality control and reduces fraud.

 6. Voting: Blockchain-based voting systems offer secure,

transparent, and impenetrable solutions for democratic processes.

Figure 3-1. Key Industries Using Blockchain

CHAPTER 3 USE CASES

105

While these applications demonstrate the versatility of blockchain, their adoption

is not without challenges. To fully realize the potential of blockchain technology, it is

necessary to address critical issues such as scalability, regulatory challenges, and user

adoption.

 Finance

The financial sector has been the first and most prominent adopter of blockchain

technology. Blockchain’s ability to streamline transactions, eliminate intermediaries,

and give global access has led to a wave of innovation in finance. In the following

section, we will explore the transformative impact of blockchain on the financial sector,

with particular emphasis on decentralized finance (DeFi), cross-border payments, and

peer-to-peer lending. The use cases show how blockchain is enabling access to financial

services and addressing inefficiencies in traditional systems.

 1. Decentralized Finance (DeFi)

Decentralized Finance, or DeFi, represents a new approach in the

financial industry. Blockchain technology allows DeFi to eliminate

the need for traditional intermediaries such as banks, allowing

users to access financial services directly through decentralized

platforms.

Key Features of DeFi:

• Permissionless Access: Anyone with an internet connection and

a compatible wallet can access DeFi services without the need for

identity verification or credit checks.

• Transparency: Transactions and smart contracts are recorded

on a public blockchain, ensuring transparency and auditability.

• Interoperability: DeFi platforms often integrate with each other,

creating a seamless ecosystem of financial services.

Common DeFi Applications (Figure 3-2):

 1. Decentralized Exchanges (DEXs): Platforms like Uniswap and

PancakeSwap enable users to trade cryptocurrencies directly from their

wallets without intermediaries.

CHAPTER 3 USE CASES

106

 2. Lending and Borrowing: Platforms like Aave and Compound allow users

to lend their assets and earn interest or borrow against their holdings. Smart

contracts automate the process, ensuring trustless interactions.

 3. Stablecoins: DeFi platforms often utilize stablecoins like DAI or USDC

for price stability, enabling users to avoid cryptocurrency volatility while

interacting with decentralized systems.

Advantages of DeFi:

• Lower Costs: By removing intermediaries, DeFi reduces

transaction fees and overhead costs.

• Global Accessibility: DeFi services are accessible to anyone,

including the unbanked and underbanked populations,

promoting financial inclusion.

• Innovation: DeFi drives rapid innovation, introducing new

financial instruments like yield farming, liquidity pools, and

flash loans.

Challenges in DeFi:

• Regulatory Uncertainty: DeFi platforms frequently operate

in a regulatory gray area, resulting in risks for both developers

and users.

• Smart Contract Vulnerabilities: Bugs in smart contracts can

lead to significant losses.

• Scalability Issues: High network congestion and gas fees on

blockchains like Ethereum can limit accessibility.

CHAPTER 3 USE CASES

107

Figure 3-2. The Decentralized Finance Ecosystem

 2. Cross-Border Payments

Traditional cross-border payments are often slow and costly and

rely on intermediaries such as banks or payment processors.

Blockchain technology enables faster, more affordable, and more

transparent solutions to these processes.

How Blockchain Transforms Cross-Border Payments:

• Reduced Transaction Times: Blockchain-based systems

settle payments within minutes, compared to traditional systems

that can take days.

• Lower Costs: By removing intermediaries, blockchain significantly

reduces transaction fees, especially for small payments.

• Transparency and Security: All transactions are recorded on an

inviolable ledger, which reduces fraud and improves trust among the parties.

Examples of Blockchain in Cross-Border Payments:

 1. Ripple (XRP): Ripple’s blockchain and XRP are used by it to facilitate fast

and cost- effective cross-border transactions. It has collaborated with banks

and financial institutions worldwide.

 2. Stellar (XLM): Stellar is designed for cross-border payments and transfers,

providing a platform for issuing and transferring digital assets.

CHAPTER 3 USE CASES

108

 3. Bitcoin and Ethereum: Both cryptocurrencies are commonly used for

international transfers, allowing users to bypass traditional banking

systems.

Real-World Impact:

• Transfers: Blockchain has made transfer services better, making

it possible for migrant workers to send money to their families

with lower fees and faster delivery.

• International Trade: Businesses use blockchain for cross-border

trade payments, enabling quicker transactions and minimizing

risks associated with intermediaries.

Challenges in Adoption (Figure 3-3):

• Regulatory Barriers: The implementation of blockchain-based

payment systems can be complicated by the differences in

regulations across countries.

• Volatility: Price fluctuations in cryptocurrencies used for cross-

border payments can affect transaction value, though stablecoins

help with this problem.

Figure 3-3. Traditional vs. Blockchain-Based Cross-Border Payments

CHAPTER 3 USE CASES

109

 3. Peer-to-Peer Lending

Peer-to-peer (P2P) lending platforms that use blockchain technology

connect borrowers directly with lenders, making it unnecessary for

traditional financial institutions. Smart contracts guarantee trust and

efficiency by automating the lending process. Figure 3-4 shows how

blockchain facilitates trustless lending and borrowing.

How Blockchain Enables P2P Lending:

• Smart Contracts: These self-executing contracts enforce the

terms of the credit, such as repayment schedules and asset

management.

• Tokenization of Assets: Blockchain allows users to tokenize

assets, enabling them to borrow against these tokens as security.

• Global Access: P2P lending platforms on blockchain provide

global accessibility, allowing users to participate regardless of

their location.

Notable Blockchain P2P Lending Platforms:

 1. Aave: A decentralized lending platform that allows users to borrow and

lend a wide range of cryptocurrencies.

 2. MakerDAO: MakerDAO enables users to borrow its stablecoin, DAI, by

locking up Ethereum as a guarantee.

 3. Celsius Network: Celsius offers P2P-like lending services with competitive

interest rates, but it is more centralized than typical DeFi platforms.

Advantages of Blockchain-Based P2P Lending:

• Lower Interest Rates: Without banks or intermediaries, lenders

and borrowers can negotiate better terms.

• Transparency: All parties are able to see loan terms, repayments,

and interest rates on the blockchain.

• Automated Collateral Management: Smart contracts can

reduce risks for lenders by liquidating guarantees automatically if

repayment conditions are not met.

CHAPTER 3 USE CASES

110

Challenges:

• Market Volatility: The guarantee used in P2P lending is often in

cryptocurrencies, which can be highly volatile, increasing risks for

borrowers and lenders.

• Regulation: Similar to DeFi, P2P lending platforms face regulatory

uncertainty, particularly concerning consumer protection and anti-

money laundering (AML) compliance.

• Awareness and Trust: Mainstream users may be unfamiliar

with blockchain-based lending platforms, preventing extensive

adoption.

Figure 3-4. Peer-to-Peer Lending with Blockchain

 Currency

Blockchain technology has redefined the concept of currency, transforming it from a

physical and centralized asset to a digital and decentralized one. From the creation of

cryptocurrencies to the development of stablecoins and central bank digital currencies

CHAPTER 3 USE CASES

111

(CBDCs), blockchain is revolutionizing how value is created, stored, and transferred.

In this section, we explore the key use cases of blockchain in currency, including their

unique advantages, adoption trends, and potential challenges.

 1. Cryptocurrencies and Stablecoins

Cryptocurrencies: Cryptocurrencies are the first and most

well- known application of blockchain technology. These are

decentralized digital currencies that use cryptographic techniques

to secure transactions, control the creation of new units, and

verify asset transfers. Bitcoin, created in 2009, was the first

cryptocurrency and remains the most well-known example.

Features of Cryptocurrencies:

• Decentralization: Cryptocurrencies operate without a central

authority, relying on a distributed network of nodes to validate

transactions.

• Transparency: Transactions are recorded on a public ledger,

making them transparent and secure against alterations.

• Borderless Transactions: Cryptocurrencies enable fast, low-cost

transactions across borders without intermediaries.

Notable Cryptocurrencies:

• Bitcoin (BTC): The first cryptocurrency, designed as a

decentralized alternative to traditional money.

• Ethereum (ETH): Known for its smart contract functionality,

Ethereum has become the foundation for decentralized

applications.

• Litecoin (LTC): A peer-to-peer cryptocurrency designed for

faster and cheaper transactions than Bitcoin.

Stablecoins: Stablecoins are a class of cryptocurrencies designed to minimize

price volatility by linking their value to a stable asset, such as fiat currency, raw

materials, or a collection of assets. They combine the benefits of blockchain

technology with the reliability of traditional financial tools. Table 3-1 compares

key features of cryptocurrencies and stablecoins.

CHAPTER 3 USE CASES

112

Table 3-1. Comparison of Cryptocurrencies vs. Stablecoins

Feature Cryptocurrencies Stablecoins

Definition Decentralized digital currencies that

operate independently of central

authorities.

Cryptocurrencies designed to maintain a

stable value by being pegged to an asset

like fiat currency or commodities.

Purpose Designed for peer-to-peer transactions,

store of value, and decentralized

finance (DeFi) use cases.

Primarily used for price stability in

transactions and remittances and as a

medium of exchange.

Examples Bitcoin (BTC), Ethereum (ETH), Litecoin

(LTC)

Tether (USDT), USD Coin (USDC), Paxos

Gold (PAXG)

Volatility High; prices fluctuate based on market

demand and supply.

Low; value remains stable due to

pegging to assets like USD or gold.

Backing Not backed by any tangible asset. Backed by fiat currency, commodities, or

algorithms.

Key

Technology

Blockchain, public-private key

cryptography, and decentralized networks.

Blockchain, pegging mechanisms (fiat-

backed, commodity-backed, or algorithmic).

Transparency Transactions are recorded on a public

blockchain, ensuring transparency.

Pegging and reserve management vary;

some are transparent, others less so.

Adoption Use

Cases

Decentralized finance (DeFi), digital

payments, cross-border remittances,

and investment.

Cross-border payments, stable

transactions, and a bridge between

crypto and fiat economies.

Challenges Volatility, scalability, and regulatory

uncertainty.

Regulatory challenges, transparency

concerns in reserve backing, and

algorithmic stability issues.

Types of Stablecoins (Figure 3-5):

 1. Fiat-Backed Stablecoins: Linked to a fiat currency like

USD or EUR. Examples include Tether (USDT) and USD

Coin (USDC).

 2. Commodity-Backed Stablecoins: Secured by tangible assets

like gold or oil. Examples include Paxos Gold (PAXG).

CHAPTER 3 USE CASES

113

 3. Algorithmic Stablecoins: Maintain their value through

algorithmic adjustments of supply and demand. Examples

include Terra (LUNA) before its collapse, leading to discussions on

algorithmic stability risks.

Figure 3-5. Types of Stablecoins

Use Cases of Cryptocurrencies and Stablecoins:

• Remittances: Provide an affordable way to send money

internationally, bypassing traditional banking systems.

• Decentralized Finance (DeFi): Used extensively in DeFi

platforms for lending, borrowing, and providing liquidity.

• E-Commerce: Enable merchants to accept payments in digital

currencies, expanding payment options for customers.

Challenges:

• Regulatory Uncertainty: Governments and financial institutions

remain divided on how to regulate cryptocurrencies.

• Volatility: Cryptocurrencies like Bitcoin are highly volatile,

making them less suitable for everyday transactions compared to

stablecoins.

• Adoption Barriers: While adoption is growing, mainstream

acceptance of cryptocurrencies is still limited by technological

and educational gaps.

CHAPTER 3 USE CASES

114

 2. Central Bank Digital Currencies (CBDCs)

Central Bank Digital Currencies (CBDCs) represent a government-

supported digital currency that operates on blockchain or similar

distributed ledger technology. Unlike cryptocurrencies, CBDCs

are centralized and issued by a nation’s central bank, combining

the benefits of digital currency with the stability and control of

traditional monetary systems.

Key Features of CBDCs:

• Centralized Control: Managed and regulated by a central

authority (e.g., the central bank).

• Digital Representation of Fiat: Functions as a digital equivalent

of a country’s fiat currency.

• Programmable Money: Can be programmed with specific rules,

such as expiration dates or spending limits, enabling greater

control over monetary policies.

Benefits of CBDCs:

 1. Financial Inclusion: Provide access to digital financial services for

unbanked populations, especially in developing countries.

 2. Efficiency: Simplify and speed up domestic and international transactions

by eliminating intermediaries.

 3. Transparency and Security: Reduce fraud and corruption through

immutable transaction records.

 4. Monetary Policy Control: Allow central banks to take immediate

actions, like providing financial aid or adjusting interest rates, to

manage the economy.

Examples of CBDCs (Figure 3-6):

• Digital Yuan (China): One of the most advanced CBDC projects,

aimed at modernizing China’s payment system and increasing its

global financial influence.

• Sand Dollar (Bahamas): Launched as the first nationwide

CBDC, enabling secure and inclusive digital transactions.

CHAPTER 3 USE CASES

115

• Digital Euro (EU) and Digital Dollar (USA): Projects under

exploration to enhance cross-border payments and maintain

competitiveness in the global digital economy.

Challenges of CBDCs:

• Privacy Concerns: CBDCs could give central authorities greater

control over citizens’ financial data, raising privacy concerns.

• Implementation Costs: Developing and integrating CBDC

systems with existing financial infrastructure requires significant

investment.

• Competition with Cryptocurrencies: CBDCs compete with

decentralized cryptocurrencies and may struggle to attract users

familiar with traditional crypto.

Figure 3-6. CBDC Implementation Initiatives

 3. Use Cases and Adoption

The adoption of blockchain-based currencies varies across

regions and use cases, driven by specific economic needs and

technological advancements.

CHAPTER 3 USE CASES

116

Key Use Cases of Blockchain Currencies:

• Digital Payments: Cryptocurrencies and stablecoins are

increasingly used for online purchases, tipping, and peer-to-peer

payments.

• Tokenized Economies: Blockchain currencies are often used

to power tokenized ecosystems, such as in-game economies or

loyalty programs.

• Cross-Border Trade: Businesses use stablecoins and

cryptocurrencies for international trade settlements, bypassing

delays and costs associated with traditional banking systems.

Adoption Trends:

 1. Developing Economies: Cryptocurrencies like Bitcoin and stablecoins are

gaining traction in regions with unstable fiat currencies or limited banking

infrastructure, such as Venezuela and Nigeria.

 2. Institutional Interest: Financial institutions and corporations, such as

PayPal and Tesla, are increasingly integrating cryptocurrencies into their

services and balance sheets.

 3. Government Initiatives: CBDCs are being explored or piloted by

over 100 central banks worldwide, with China’s Digital Yuan

leading the way.

Challenges to Universal Adoption (Table 3-2):

• Regulatory Uncertainty: The lack of a global consensus on

cryptocurrency and CBDC regulation creates barriers for

international adoption.

• Scalability: Blockchains like Bitcoin and Ethereum face

scalability challenges, limiting their capacity to handle large

transaction volumes efficiently.

• Technological Accessibility: Ensuring that blockchain

currencies are user-friendly and accessible to non-technical

users remains a significant challenge.

CHAPTER 3 USE CASES

117

Table 3-2. Timeline of Blockchain Currency Adoption and Milestones

Year Milestone Description Numbers/Stats

2009 Bitcoin Creation Bitcoin, the first cryptocurrency, was

created by Satoshi Nakamoto as a

decentralized digital currency.

Initial supply: 50 BTC per block

mined.

2015 Ethereum Launch Ethereum introduced smart contracts,

enabling decentralized applications

(DApps) and blockchain innovation.

The Initial Coin Offering (ICO)

raised over $18 million; ~72

million ETH were initially

created.

2018 Stablecoin Adoption Tether (USDT) and USD Coin (USDC)

gained popularity as stable alternatives

to volatile cryptocurrencies.

Tether’s market cap surpassed

$2 billion.

2020 PayPal’s

Cryptocurrency

Integration

PayPal enabled users to buy, hold, and

sell cryptocurrencies, including Bitcoin,

Ethereum, Litecoin, and Bitcoin Cash.

Over 360 million PayPal

users gained access to

cryptocurrencies.

2021 Tesla’s Acceptance

of Bitcoin

Tesla announced it would accept

Bitcoin for payments, significantly

boosting cryptocurrency visibility.

Tesla purchased $1.5 billion

worth of Bitcoin; the Bitcoin

price surged over $60,000.

2021 China’s Digital Yuan

Pilots

China expanded trials of its CBDC, the

Digital Yuan, marking a major step in

government-backed digital currencies.

Over 261 million digital yuan

wallets were created by 2021.

2022 Institutional

Investment Surge

Major firms like MicroStrategy, Square,

and others added cryptocurrencies to

their balance sheets.

MicroStrategy alone held over

120,000 BTC (~$6 billion at the

time).

2023 Central Bank Digital

Currency (CBDC)

Growth

Over 100 central banks began

exploring or piloting CBDCs, with

projects like the Sand Dollar

(Bahamas) and Digital Euro.

114 countries engaged in CBDC

research; 11 launched CBDCs

by 2023.

(continued)

CHAPTER 3 USE CASES

118

Table 3-2. (continued)

Year Milestone Description Numbers/Stats

2024 Increased Adoption

in Developing

Economies

Cryptocurrencies like Bitcoin and

stablecoins gained traction in countries

with unstable fiat currencies or limited

banking infrastructure (e.g., Nigeria,

Venezuela).

Nigeria’s adoption rate reached

45%; remittance costs were

reduced by 50% in many

regions using stablecoins.

 Property Records

Blockchain technology has the potential to revolutionize property record management

by providing a secure, transparent, and unchangeable method for documenting

ownership and transactions. By eliminating inefficiencies, reducing fraud, and

enhancing accessibility, blockchain transforms how property records are managed,

verified, and transferred. In this section, we explore the use cases of blockchain in

property records, including digital land registries, property ownership verification, and

real-world implementations.

 1. Digital Land Registries

Traditional land registries often face challenges such as

inefficiency, corruption, and a lack of transparency. Blockchain-

based digital land registries solve these issues by offering a

permanent and decentralized record of property ownership and

transactions. Figure 3-7 outlines how land registry processes are

automated on blockchain.

Key Features of Blockchain-Based Land Registries:

• Immutability: Once property records are added to the

blockchain, they cannot be altered or deleted, ensuring the

integrity of ownership data.

• Transparency: All transactions and changes to property records

are visible on the blockchain, creating trust among stakeholders.

• Accessibility: Blockchain simplifies access to property records,

reducing administrative delays and improving efficiency.

CHAPTER 3 USE CASES

119

How It Works:

 1. Property details, including ownership history, boundaries, and transaction

records, are tokenized and stored on the blockchain.

 2. Smart contracts automate processes like title transfers, ensuring

compliance with legal and regulatory requirements.

 3. Participants, including government agencies, buyers, sellers, and financial

institutions, access and update records on the blockchain.

Benefits:

• Reduced Fraud: Blockchain eliminates the risk of fraudulent

transactions by providing a single, verifiable source of truth for

property ownership.

• Efficiency: Converting property records to digital formats

eliminates paperwork and speeds up processes such as title

searches and transfers.

• Cost Savings: By eliminating intermediaries and reducing

administrative overhead, blockchain significantly lowers costs for

buyers, sellers, and governments.

Challenges:

• Integration with Legacy Systems: Many land registries rely on

outdated systems that are difficult to integrate with blockchain.

• Regulatory Uncertainty: Implementing blockchain-based land

registries requires alignment with existing legal and regulatory

frameworks.

• Access to Technology: Ensuring that rural and underserved

populations can access blockchain-based systems is a

critical hurdle.

CHAPTER 3 USE CASES

120

Figure 3-7. Blockchain-Based Land Registry Architecture

 2. Property Ownership Verification

Verifying property ownership is often a complex and time-

consuming process, especially in regions with poor record-

keeping practices. Blockchain simplifies and secures ownership

verification by creating a decentralized and tamper-proof record

of ownership. Figure 3-8 depicts the digitization of property titles

via blockchain.

How Blockchain Allows Ownership Verification:

• Tokenization: Property titles are digitized and represented as

tokens on the blockchain. These tokens contain metadata about

the property, including ownership history, location, and legal

documentation.

• Smart Contracts: Smart contracts automate verification

processes, ensuring that all required documents and approvals

are in place before ownership can be transferred.

CHAPTER 3 USE CASES

121

• Immutable Records: Blockchain ensures that ownership history

is accurate and unalterable, reducing disputes and fraud.

Applications:

• Title Insurance: Blockchain reduces the need for extensive title

searches and insurance by providing a clear and verified record

of ownership.

• Mortgages and Loans: Lenders can quickly verify ownership and

property details, speeding up the approval process for mortgages

and loans.

• Disaster Recovery: In the event of natural disasters or conflict,

blockchain ensures that property ownership records remain

secure and accessible.

Figure 3-8. Property Ownership Verification with Blockchain

 3. Case Studies and Implementations

Several governments and organizations around the world have

begun adopting blockchain technology to manage property

records and streamline land transactions. These real-world

implementations showcase the transformative potential of

blockchain in the property sector.

CHAPTER 3 USE CASES

122

 1. Georgia’s National Agency of Public Registry (NAPR):

• Georgia has implemented a blockchain-based land registry

system in partnership with Bitfury, a blockchain technology

company.

• The system records property transactions on the blockchain,

providing an immutable and transparent ledger of ownership.

• Since its launch, the platform has processed thousands

of transactions, reducing fraud and improving trust in the

property market.

 2. India’s Land Registry Projects:

• Several states in India, including Andhra Pradesh and

Telangana, have partnered with blockchain firms to digitize

and secure land records.

• These initiatives aim to address issues like corruption, land

disputes, and lack of transparency in the country’s traditional

land registry systems.

• By using blockchain, the states aim to create a single source of

truth for property ownership, accessible to both citizens and

government agencies.

 3. Dubai Land Department (DLD):

• Dubai has integrated blockchain technology into its land

registry system as part of its broader Smart Dubai initiative.

• The DLD’s blockchain platform allows users to conduct

property transactions online, including title transfers, payment

processing, and contract management.

• The platform enhances transparency, reduces paperwork,

and supports Dubai’s goal of becoming a global leader in

blockchain adoption.

 4. Honduras Land Title Pilot Project:

• Honduras has partnered with Factom, a blockchain

technology firm, to create a blockchain-based land registry.

CHAPTER 3 USE CASES

123

• The project aims to address corruption and land disputes by

providing a secure and transparent record of land ownership.

• Although the project faced challenges, it highlights the

potential for blockchain to improve land governance in

developing countries.

 5. Sweden’s Lantmäteriet:

• Sweden’s land registry authority, Lantmäteriet, has been

testing a blockchain-based platform for property transactions.

• The system allows buyers, sellers, banks, and government

agencies to access and update property records in real time,

reducing transaction times from months to weeks.

Figure 3-9 illustrates several real-world implementations of blockchain-based

property registries across different countries, highlighting how governments are

leveraging distributed ledger technology to enhance transparency, reduce fraud, and

improve the efficiency of land management systems (Bitfury, 2017; Factom, 2016; Smart

Dubai, 2019; Lantmäteriet, 2018).

Figure 3-9. Blockchain Property Use Cases Worldwide

CHAPTER 3 USE CASES

124

 Smart Contracts

Smart contracts are one of the most transformative applications of blockchain

technology, enabling automated, secure, and decentralized agreements between parties.

By embedding the terms of an agreement into self-executing code, smart contracts

eliminate the need for intermediaries, reduce costs, and increase trust. This section

covers the definition and workings of smart contracts, their applications in different

industries, and the legal and regulatory aspects associated with them.

 1. Definition and Functionality

A smart contract is a self-executing program that runs on a

blockchain. The contract’s terms and conditions are written

directly into its code, ensuring that they are automatically

enforced without the need for manual intervention.

Key Features of Smart Contracts:

• Automation: Smart contracts automatically execute actions

when predefined conditions are met.

• Decentralization: They operate on a blockchain, removing the

need for a central authority or intermediary.

• Immutability: Once deployed on the blockchain, smart contracts

cannot be altered, ensuring trust and security.

• Transparency: The code and execution of smart contracts are

visible to all participants in the blockchain network.

How They Work (Figure 3-10):

 1. Programming: Smart contracts are typically written in blockchain-specific

programming languages, such as Solidity for Ethereum.

 2. Deployment: The contract is deployed on a blockchain, where it becomes

an immutable and accessible record.

 3. Execution: When triggered by predefined conditions (e.g., receiving

payment, meeting a deadline), the contract automatically performs the

specified actions, such as transferring assets or sending notifications.

CHAPTER 3 USE CASES

125

 4. Verification: The blockchain network validates the contract’s execution,

ensuring that it operates as intended.

Figure 3-10. Lifecycle of a Smart Contract

 2. Use Cases in Various Industries

Smart contracts have a wide range of applications across

industries, where they automate processes, reduce costs, and

enhance security. Figure 3-11 shows how different industries

benefit from smart contracts.

 1. Finance:

• Decentralized Finance (DeFi): Smart contracts power DeFi

platforms, enabling services like lending, borrowing, and yield

farming without intermediaries.

• Tokenized Assets: Smart contracts facilitate the creation and

management of tokenized assets, such as stocks, bonds, and

real estate, on blockchain platforms.

• Escrow Services: By holding funds in escrow until conditions

are met, smart contracts guarantee trust between parties in

transactions.

 2. Real Estate:

• Property Transactions: Smart contracts automate processes

like title transfers and payments, reducing delays and costs.

• Leasing and Rentals: Contracts can automate rental

agreements, ensuring on-time payments and enforcing terms

without manual intervention.

CHAPTER 3 USE CASES

126

 3. Supply Chain Management:

• Traceability: Smart contracts record and verify the movement

of goods at every stage of the supply chain, ensuring

transparency and authenticity.

• Payments: Payments can be triggered automatically upon the

delivery of goods, reducing delays and disputes.

 4. Insurance:

• Claims Processing: Smart contracts streamline claims

processing by automatically verifying conditions and releasing

payments to policyholders.

• Parametric Insurance: Contracts automatically execute

payouts based on predefined triggers, such as weather data or

flight delays.

 5. Healthcare:

• Data Sharing: Smart contracts facilitate secure sharing of

patient data among healthcare providers while ensuring

compliance with privacy regulations.

• Clinical Trials: Contracts automate the management of

clinical trial data, ensuring transparency and accuracy.

 6. Gaming and NFTs:

• In-Game Economies: Smart contracts manage in-game assets

and currencies, enabling secure and transparent transactions.

• NFT Marketplaces: They power the minting, buying, and

selling of non-fungible tokens (NFTs), automating royalty

payments and ownership transfers.

CHAPTER 3 USE CASES

127

Figure 3-11. Applications of Smart Contracts by Sector

 3. Legal and Regulatory Considerations

While smart contracts offer significant advantages, they also

raise legal and regulatory challenges that must be addressed for

universal adoption. Figure 3-12 highlights the legal complexities

surrounding smart contract use.

 1. Validity:

• Legal systems must determine whether smart contracts are

legally binding agreements, particularly when disputes arise.

• Jurisdictional issues can complicate enforcement, especially in

cross-border transactions.

 2. Compliance:

• Smart contracts must comply with existing laws and

regulations, such as anti-money laundering (AML) and data

protection laws.

• Developers and users must ensure that the contract’s terms

align with applicable legal frameworks.

CHAPTER 3 USE CASES

128

 3. Coding Errors:

• Smart contracts are immutable once deployed, meaning

that errors in the code cannot be corrected. This has led to

significant financial losses in cases where vulnerabilities were

taken advantage of.

• Rigorous auditing and testing are essential to reduce the risk

of errors.

 4. Liability:

• Determining liability in the event of a malfunction or exploit

is a complex issue. Questions arise regarding whether the

developer, user, or platform is responsible for damages.

 5. Ethical Concerns:

• The automation of decisions in smart contracts raises ethical

concerns, particularly in scenarios where unexpected

circumstances could negatively impact one party.

Figure 3-12. Legal and Regulatory Challenges for Smart Contracts

CHAPTER 3 USE CASES

129

 4. Case Studies and Real-World Examples (Figure 3-13)

 1. Ethereum:

• Ethereum is the leading blockchain for smart contracts,

powering thousands of decentralized applications (DApps)

and projects.

• Examples include Uniswap (a decentralized exchange),

MakerDAO (a lending platform), and OpenSea (an NFT

marketplace).

 2. Insurance Platform: Nexus Mutual:

• Nexus Mutual uses smart contracts to offer decentralized

insurance for blockchain-based projects. Policyholders can

claim payouts automatically when predefined conditions

are met.

 3. Real Estate: Propy:

• Propy is a blockchain-based platform that enables real estate

transactions using smart contracts. Buyers and sellers can

complete transactions entirely online, with smart contracts

automating title transfers and payments.

 4. Gaming: Axie Infinity:

• Axie Infinity, a blockchain-based game, uses smart contracts

to manage in-game assets and rewards. Players can own and

trade NFTs representing game characters and items.

Figure 3-13. Smart Contract Use Cases and Platforms

CHAPTER 3 USE CASES

130

 Supply Chains

Supply chain management is a complex and often non-transparent process involving

multiple parties, from manufacturers and suppliers to retailers and consumers.

Blockchain technology has emerged as a transformative solution, enhancing

transparency, traceability, and efficiency across the supply chain. By providing a

decentralized and immutable ledger, blockchain ensures that every transaction and

movement of goods is recorded and verifiable in real-time. In this section, we explore

how blockchain improves supply chain management, highlighting key applications, real-

world examples, and challenges.

 1. Transparency and Traceability

One of the most significant contributions of blockchain to supply

chains is its ability to provide end-to-end transparency and

traceability. Traditional supply chains often lack visibility, making

it difficult to track the origin, movement, and authenticity of

goods. Blockchain addresses these challenges by offering a secure

and shared record of all transactions and activities. Figure 3-14

outlines the role of blockchain in supply chain monitoring.

Key Features:

• Immutable Records: Every transaction, from raw material

procurement to product delivery, is recorded on the blockchain

and cannot be altered or deleted.

• Real-Time Tracking: Blockchain enables real-time tracking of

goods, allowing stakeholders to monitor their status and location

at every stage of the supply chain.

• Provenance Verification: Blockchain verifies the origin and

journey of products, ensuring authenticity and compliance with

regulations.

Use Cases:

 1. Food Safety: Blockchain helps track the origin of food items, ensuring that

they meet quality and safety standards. In the event of contamination or

product withdrawals, blockchain allows rapid identification and isolation of

affected products.

CHAPTER 3 USE CASES

131

 2. Pharmaceuticals: Counterfeit drugs are a major issue in the

pharmaceutical industry. Blockchain tracks the journey of medicines from

manufacturer to retailer to ensure their authenticity.

 3. Luxury Goods: High-value items like diamonds and designer products

can be authenticated using blockchain, preventing counterfeit goods from

entering the market.

Figure 3-14. Supply Chain Transparency via Blockchain

 2. Real-World Examples

Several companies and organizations are leveraging blockchain

technology to transform their supply chains. These examples

demonstrate the practical benefits of blockchain across various

industries. Figure 3-15 shows blockchain platforms adopted by

logistics and retail companies.

 1. IBM Food Trust:

• IBM Food Trust is a blockchain-based platform that enhances

transparency and efficiency in the food supply chain.

• Partnering with major companies like Walmart and Nestlé, the

platform tracks food items from farm to table, ensuring safety

and reducing waste.

CHAPTER 3 USE CASES

132

• Example: Walmart uses IBM Food Trust to trace the origin of

mangoes, reducing the time required to track a shipment from

days to seconds.

 2. Maersk and TradeLens:

• Maersk, a global shipping giant, partnered with IBM to

develop TradeLens, a blockchain-based supply chain platform

for the shipping industry.

• TradeLens provides real-time tracking of shipping containers,

reduces paperwork, and improves communication between

stakeholders.

• The platform has onboarded over 150 organizations, including

ports, shipping lines, and customs authorities.

 3. Everledger:

• Everledger uses blockchain to track the provenance of

diamonds, ensuring ethical sourcing and reducing the risk

of fraud.

• Each diamond is assigned a unique digital identity recorded

on the blockchain, which includes details about its origin,

quality, and ownership history.

 4. VeChain:

• VeChain is a blockchain platform designed for supply chain

management and business processes.

• It provides tools for tracking and verifying products in

industries such as fashion, automotive, and food.

• Example: VeChain has partnered with wine producers to

ensure the authenticity and quality of premium wines.

CHAPTER 3 USE CASES

133

Figure 3-15. Real-World Blockchain Supply Chain Examples

 3. Benefits of Blockchain in Supply Chains

 1. Enhanced Trust: Blockchain fosters trust among supply chain participants

by providing a single source of truth that all parties can access and verify.

 2. Improved Efficiency: By automating processes such as documentation,

payments, and compliance checks, blockchain reduces delays and

operational costs.

 3. Fraud Prevention: Immutable records and traceability make it difficult for

counterfeit goods or fraudulent transactions to enter the supply chain.

 4. Sustainability: Blockchain enables companies to track and verify

sustainable practices, such as ethical sourcing and reduced carbon

footprints, appealing to environmentally conscious consumers.

 5. Customer Confidence: Consumers can access blockchain-based

information about a product’s origin, quality, and journey, building trust

and loyalty.

As shown in Figure 3-16, blockchain improves trust and efficiency.

CHAPTER 3 USE CASES

134

Figure 3-16. Benefits of Blockchain for Supply Chain Management

 4. Challenges and Considerations

While blockchain offers significant advantages for supply

chains, its implementation is not without challenges. Figure 3-17

summarizes common obstacles to blockchain adoption in

logistics.

 1. Scalability: Supply chains involve millions of transactions, and many

blockchains struggle to handle high volumes of data efficiently.

 2. Integration with Legacy Systems: Many organizations rely on legacy

systems that are not compatible with blockchain, making integration

complex and costly.

 3. Data Privacy: While transparency is a strength, some supply chain

participants may hesitate to share sensitive business information on a

public or semi-public blockchain.

CHAPTER 3 USE CASES

135

 4. Adoption Barriers: Blockchain adoption requires buy-in from all

stakeholders, which can be challenging in fragmented supply chains with

diverse participants.

 5. Initial Costs: Implementing blockchain systems requires significant

investment in technology, infrastructure, and training.

Figure 3-17. Supply Chain Implementation Challenges

 5. Future Outlook

As blockchain technology matures, its adoption in supply chains

is expected to grow. Innovations such as Layer 2 scaling solutions,

hybrid blockchain models, and interoperability protocols

will address many of the current challenges. Additionally, the

integration of blockchain with emerging technologies like the

Internet of Things (IoT) and artificial intelligence (AI) will further

enhance supply chain management. Figure 3-18 presents future

directions for blockchain in global supply management.

Predictions:

 1. IoT Integration: IoT devices embedded in products and containers will

provide real-time data, which can be recorded on the blockchain for

enhanced tracking and monitoring.

 2. Smart Contracts: Automated contracts will handle payments, compliance,

and penalties, streamlining operations and reducing disputes.

 3. Global Standards: Industry-wide adoption of blockchain standards will

improve interoperability and drive universal adoption.

CHAPTER 3 USE CASES

136

Figure 3-18. Future Trends in Blockchain-Enabled Supply Chains

 Voting

Voting is a fundamental part of democratic societies, but traditional voting systems

often face challenges such as fraud, lack of transparency, accessibility issues, and

inefficiencies. Blockchain technology has emerged as a promising solution to

these problems, offering secure, transparent, and immutable voting systems. Using

blockchain, elections can become more inclusive, efficient, and trustworthy. In this

section, we explore how blockchain enhances voting systems, the benefits it provides,

challenges to its adoption and real-world examples.

 1. Blockchain-Based Voting Systems

Blockchain-based voting systems use the technology’s

decentralized and secure features to ensure the integrity

of elections. Each vote is recorded as a transaction on the

blockchain, creating an immutable and transparent ledger of

the election process. Figure 3-19 explains the core flow of a

blockchain-enabled election.

How It Works:

 1. Voter Authentication: Voters authenticate their identity using secure

methods, such as digital IDs or biometrics.

 2. Vote Casting: Votes are cast through an online interface or a blockchain-

based application. Each vote is encrypted and recorded on the blockchain

as a transaction.

CHAPTER 3 USE CASES

137

 3. Immutable Record: Once recorded, votes cannot be altered or deleted,

ensuring the integrity of the election.

 4. Real-Time Auditing: Election results can be audited in real time by

authorized participants, increasing transparency and reducing delays.

 5. Decentralized Storage: The blockchain’s distributed nature ensures that

no single entity can manipulate the election results.

Key Features:

• Transparency: All participants can view the voting process,

ensuring trust in the system.

• Security: Blockchain’s cryptographic methods safeguard votes

against alteration and unauthorized access.

• Accessibility: Blockchain permits remote voting, making

elections more inclusive for individuals unable to vote in person.

Figure 3-19. How Blockchain Voting Systems Work

 2. Benefits of Blockchain-Based Voting (Figure 3-20)

 1. Enhanced Security:

• Votes are encrypted and stored on an immutable ledger,

preventing tampering or unauthorized changes.

CHAPTER 3 USE CASES

138

• Blockchain eliminates the risk of single points of failure,

making elections resistant to cyberattacks.

 2. Transparency and Trust:

• The voting process is fully transparent, allowing voters and

observers to verify that their votes were counted accurately.

• Results can be audited in real-time, reducing suspicion of

fraud or manipulation.

 3. Accessibility:

• Blockchain enables remote and online voting, making

elections more inclusive for individuals with disabilities, those

living abroad, or those in remote areas.

• By removing geographical barriers, blockchain increases voter

turnout.

 4. Efficiency:

• Blockchain automates vote counting and verification,

significantly reducing the time required to finalize results.

• Eliminating intermediaries, such as election officials or

manual vote counters, reduces operational costs.

CHAPTER 3 USE CASES

139

Figure 3-20. Benefits of Blockchain Voting

 3. Challenges of Blockchain-Based Voting

Despite its advantages, blockchain-based voting faces several

challenges that must be addressed before widespread adoption.

Figure 3-21 outlines limitations such as scalability and voter

authentication.

 1. Scalability:

• Handling millions of votes during national elections requires

high-performance blockchains capable of processing large

transaction volumes efficiently.

• Current blockchain networks, such as Bitcoin and Ethereum,

face limitations in scalability and transaction speed.

 2. Voter Authentication:

• Ensuring secure and accessible voter authentication methods

is critical to preventing fraud and unauthorized voting.

CHAPTER 3 USE CASES

140

• Integrating digital ID systems with blockchain voting

platforms can address this challenge but requires significant

infrastructure development.

 3. Privacy Concerns:

• While blockchain offers transparency, ensuring voter

anonymity is crucial to maintaining privacy in elections.

• Implementing privacy-preserving technologies, such as zero-

knowledge proofs, can balance transparency with

confidentiality.

 4. Regulatory and Legal Barriers:

• Many countries lack clear regulations or legal frameworks for

blockchain-based voting.

• Aligning blockchain voting systems with existing election laws

and standards is essential for adoption.

 5. Public Perception and Trust:

• Blockchain technology is still relatively new, and building

public confidence in its reliability and security remains a

challenge.

• Educating voters and stakeholders about blockchain’s benefits

and functionality is critical to building confidence.

CHAPTER 3 USE CASES

141

Figure 3-21. Challenges in Blockchain-Based Voting

 4. Real-World Examples

Several organizations and governments have experimented with

blockchain-based voting systems, demonstrating the technology’s

potential to improve election processes. Figure 3-22 presents pilot

programs using blockchain in voting worldwide.

 1. Estonia:

• Estonia, a pioneer in digital governance, has explored

blockchain for its e-voting system.

• The country uses digital IDs for secure voter authentication

and blockchain to ensure the integrity of election data.

 2. West Virginia (USA):

• During the 2018 midterm elections, West Virginia piloted

a blockchain-based voting system for military personnel

stationed overseas.

• The system allowed secure remote voting through a mobile

application, enhancing accessibility for eligible voters.

CHAPTER 3 USE CASES

142

 3. Switzerland:

• Switzerland has conducted multiple trials of blockchain-based

voting systems at the municipal level.

• These trials focused on improving transparency and reducing

the costs associated with traditional voting systems.

 4. Sierra Leone:

• In 2018, Sierra Leone used a blockchain platform to verify

election results, becoming one of the first countries to do so.

• Blockchain helped ensure transparency and trust in the

electoral process.

 5. Voatz:

• Voatz is a blockchain-based mobile voting platform used

in several pilot programs in the USA, including in Utah and

Colorado.

• The platform combines blockchain with biometric authentication

to provide a secure and user-friendly voting experience.

Figure 3-22. Global Blockchain Voting Initiatives

CHAPTER 3 USE CASES

143

 5. The Future of Blockchain Voting

The integration of blockchain with emerging technologies, such

as artificial intelligence (AI) and biometrics, holds promise for

addressing current challenges in blockchain-based voting. Future

developments could include (Figure 3-23):

 1. Layer 2 Solutions: Using Layer 2 protocols to enhance blockchain

scalability and reduce transaction costs for large-scale elections.

 2. Zero-Knowledge Proofs: Employing privacy-preserving technologies to

ensure voter anonymity while maintaining transparency.

 3. Global Standards: Creating international guidelines and regulations for

blockchain voting to guarantee compatibility and legal adherence.

As blockchain technology matures, its adoption in voting systems could transform

how elections are conducted, making them more secure, transparent, and inclusive.

Figure 3-23. The Future of Voting with Blockchain

 Conclusion

The use cases explored in this chapter illustrate how blockchain technology is no longer

just a theoretical innovation; it is being actively applied across sectors to solve real-world

problems. From enabling financial inclusion through DeFi to securing the integrity of

elections and property records, blockchain’s decentralized model provides tangible

benefits like transparency, efficiency, and trust. At the same time, each use case also

reveals the current limitations of the technology, including scalability, regulation, and

technical barriers.

CHAPTER 3 USE CASES

144

As adoption grows and technical solutions evolve, such as Layer 2 scaling,

interoperability protocols, and regulatory frameworks, blockchain is poised to become a

critical infrastructure for digital transformation across industries.

 Chapter Summary

Topic Key takeaways

Finance Blockchain enables decentralized financial services (DeFi), faster cross-border

payments, and P2P lending without intermediaries.

Currency Cryptocurrencies, stablecoins, and CBDCs redefine how money is created,

transferred, and stabilized across global systems.

Property

Records

Blockchain secures land ownership and property records, improving efficiency,

reducing fraud, and enabling transparency.

Smart

Contracts

Self-executing code automates agreements in sectors like insurance, real estate,

and logistics, minimizing manual intervention.

Supply

Chains

Blockchain increases traceability, ensures product authenticity, and enhances

transparency from manufacturing to delivery.

Voting Blockchain-based voting offers secure, transparent, and remote participation in

elections while addressing trust and auditability.

Adoption

Challenges

Regulatory uncertainty, scalability issues, and lack of user-friendly access continue

to slow mainstream adoption.

CHAPTER 3 USE CASES

145
© Soumaya Erradi 2025
S. Erradi, Web3 Development with Angular, https://doi.org/10.1007/979-8-8688-1886-8_4

CHAPTER 4

Pros and Cons
of Blockchain

 Introduction

This chapter explores the dual nature of blockchain technology, diving into both its

strengths and its current limitations. As adoption grows, it’s essential to evaluate the

practical implications of decentralization, enhanced security, and transaction efficiency,

as well as the operational challenges, such as scalability, energy consumption, and

regulatory hurdles.

We will examine how blockchain performs in key areas like cost, speed, and

transparency, supported by real-world use cases. The chapter also outlines the evolving

regulatory landscape and how governments are responding to the disruptive nature of

decentralized technologies.

By the end of this chapter, you will be able to:

• Understand the technical and organizational benefits of

decentralization.

• Evaluate how blockchain improves transaction speed, cost-efficiency,

and transparency.

• Identify the current technical and legal limitations of blockchain

technology.

• Analyze case studies from various sectors applying blockchain in

innovative ways.

• Explore the future directions in scalability, regulation, and

sustainable blockchain development.

https://doi.org/10.1007/979-8-8688-1886-8_4#DOI

146

 The Benefit of Decentralization

Blockchain technology’s most defining feature is its decentralized nature. Unlike

traditional centralized systems, where a single entity has control, blockchain operates on

a distributed network.

This decentralization offers numerous advantages, addressing many limitations of

centralized systems and fostering trust, security, and resilience. Figure 4-1 illustrates the

contrast between different systems.

Figure 4-1. Decentralized vs. Centralized vs. Distributed Architecture

 Reduced Single Points of Failure

Centralized systems have a critical vulnerability: a single point of failure. This

vulnerability can be made use of by malicious actors, resulting in catastrophic failures

due to system errors or leading to data loss in the event of a hardware or software

malfunction. Distributing data and control across multiple nodes in a blockchain

network prevents these risks.

For instance:

• Data Integrity: In centralized databases, if the central server is

compromised, the entire system is at risk. With blockchain, data

is replicated across all participating nodes, ensuring redundancy.

Even if one node is compromised, the integrity of the overall system

remains intact.

• Resilience to Attacks: A distributed network is inherently more

resilient to Distributed Denial-of-Service (DDoS) attacks, as attackers

must overwhelm a majority of nodes rather than a single server.

This decentralized architecture is both robust and secure for users who rely on the

system for critical applications, such as financial transactions or healthcare data storage.

Chapter 4 pros and Cons of BloCkChain

147

 Enhanced Security and Resilience

Decentralization also enhances the security posture of blockchain networks. Security is

built into the system via cryptographic mechanisms and consensus protocols, which are

essential for guaranteeing the accuracy and reliability of data.

 1. Alteration Resistance: Each block in a blockchain is

cryptographically linked to the previous one. This ensures that

altering any part of the data requires re-mining or re- validating all

subsequent blocks, which is computationally impractical in most

cases. If there is no consensus among the majority of participants,

manipulation becomes impossible.

 2. Byzantine Fault Tolerance: Blockchain networks are designed

to operate effectively even in the presence of malicious actors

or faulty nodes. Through consensus mechanisms such as

Proof of Work (PoW) or Proof of Stake (PoS), the network can

reach agreements on transactions, ensuring reliability and

trustworthiness.

 3. Resilience Against Failures: In centralized systems, operations

can be severely impacted by a breakdown. For example, when a

banking server experiences downtime, customers are unable to

access funds or make transactions. Blockchain’s decentralized

nature distributes the load across multiple nodes, ensuring

continuous operation even if some nodes fail. This resilience is

highly valuable in industries where operating time and reliability

are crucial.

 4. Censorship Resistance: Decentralized systems are less sensitive

to censorship. Since no single entity controls the blockchain, it

becomes difficult for governments, organizations, or individuals

to block or manipulate specific transactions. This attribute is

especially significant in regions where financial or political

systems impose stringent restrictions.

Chapter 4 pros and Cons of BloCkChain

148

 Real-World Examples of Decentralization Benefits

The benefits of decentralization are already evident in various sectors (Table 4-1):

• Finance: Cryptocurrencies like Bitcoin and Ethereum demonstrate

how decentralization enables borderless transactions without

reliance on banks or intermediaries. This fosters financial inclusion,

particularly in regions with limited access to traditional banking

services.

• Supply Chain: Blockchain-powered supply chains, such as IBM’s

Food Trust, use decentralization to track goods transparently and

ensure authenticity. By distributing data across participants, they

eliminate the risk of data manipulation by any single entity.

• Healthcare: Decentralized health data platforms empower patients

by giving them control over their medical records. For example,

MediBloc enables secure sharing of health information among

patients, providers, and researchers without central control.

Table 4-1. Sector-Specific Benefits of Blockchain Decentralization

Sector Use Case Examples

finance Cross-border payments, defi ripple, aave, Uniswap

healthcare Medical data sharing MediBloc, Medicalchain

supply Chain provenance, anti-fraud iBM food trust, provenance

Government Voting, digital id estonia e-Gov, uport

energy peer-to-peer energy trading energy Web foundation

 Challenges of Decentralization

While decentralization offers immense benefits, it is not without challenges.

Understanding these limitations helps in designing more robust blockchain systems.

Table 4-2 summarizes the main advantages and trade-offs of blockchain technology.

Chapter 4 pros and Cons of BloCkChain

149

 1. Coordination and Governance: In decentralized networks,

decision-making can be slow and controversial. Unlike centralized

systems where decisions are made unilaterally, blockchain

networks require consensus, which can delay critical updates or

changes.

 2. Resource Intensity: Decentralization often requires significant

computational and energy resources. For example, Proof of

Work (PoW) consensus mechanisms consume vast amounts of

electricity, raising concerns about sustainability.

 3. Scalability Issues: Fully decentralized systems can face scalability

challenges. As more nodes join the network, the time required

for consensus and data synchronization increases, potentially

slowing down transaction processing.

 4. User Responsibility: Decentralization shifts responsibility from

centralized authorities to users. While this empowers individuals,

it also means they must manage their private keys securely. Loss

of keys often results in irreversible loss of funds or access to data.

Table 4-2. Summary of Blockchain Pros and Cons

Pros Cons

no single point of failure slower decision-making

enhanced security high energy/resource consumption

resilience to attacks Users must manage private keys securely

Censorship resistance scalability remains a technical challenge

 Efficient Transactions

Blockchain’s ability to enable efficient transactions is one of its most transformative

aspects. Figure 4-2 visualizes how blockchain simplifies transactions by removing

intermediaries.

Chapter 4 pros and Cons of BloCkChain

150

By eliminating intermediaries, streamlining processes and leveraging distributed

ledger technology, blockchain has revolutionized the way transactions are conducted

across various industries. This efficiency is realized through improvements in speed,

cost, reliability and accessibility.

Figure 4-2. Blockchain-Enabled Transaction Efficiency

 Speed and Cost Benefits

Traditional transaction systems, such as bank transfers or cross-border payments, often

involve multiple intermediaries like clearinghouses and banks. These intermediaries not

only increase the time required to complete transactions but also add significant costs.

Blockchain simplifies this by enabling direct peer-to-peer transactions that are both

faster and cheaper.

 1. Instant Settlements: Blockchain transactions can be settled in

near real-time. For example:

• Bitcoin transactions typically take about 10 minutes to confirm,

making it faster than traditional wire transfers, which can take

several days.

Chapter 4 pros and Cons of BloCkChain

151

• Newer blockchain protocols like Solana and Avalanche have

reduced settlement times to seconds, providing an experience

comparable to real-time payment systems like Visa.

 2. Lower Fees: Blockchain can decrease transaction costs by

eliminating the need for intermediaries. For instance:

• Cross-border payments via platforms like Ripple cost a fraction of

traditional remittance services such as Western Union or SWIFT.

• Platforms supporting microtransactions, such as those for digital

content, benefit from low-cost blockchain transfers, enabling

pay-per- use models that were previously expensive due to

high fees.

 3. Batch Processing and Automation: Smart contracts enable

automated batch processing of transactions. For example, an

escrow service using smart contracts can process multiple

transactions simultaneously without manual intervention,

reducing costs and increasing speed.

 Comparisons with Traditional Systems

Blockchain’s efficiency shines when compared to conventional financial systems. Several

key comparisons include:

• Cross-Border Payments: Traditional systems like SWIFT involve

multiple intermediaries, leading to delays and high fees. Blockchain

platforms such as RippleNet or Stellar enable instant, low-cost cross-

border payments, making international transfers accessible to a

broader audience.

• Settlement Processes: In traditional markets, clearing and

settlement can take up to two business days. Blockchain eliminates

the need for clearinghouses, providing same-day or instant

settlement for securities and other financial instruments.

Chapter 4 pros and Cons of BloCkChain

152

• Microtransactions: In conventional systems, high fees make

small transactions impractical. Blockchain facilitates low-cost

microtransactions, enabling innovative business models such as

subscription-free digital services or pay-per-view content.

 Reliability and Accessibility

Unlike traditional systems that operate during fixed hours and are subject to downtimes,

blockchain networks run 24/7. This constant availability ensures that users can initiate

and complete transactions at any time, without being constrained by business hours or

geographic locations.

 1. Global Reach: Blockchain is borderless by nature, allowing users in

underbanked regions to access financial services without needing a

traditional bank account. Projects like Celo and Stellar are targeting

these markets with user-friendly blockchain solutions.

 2. Resilience to Failures: Traditional centralized systems are

vulnerable to single points of failure, such as server outages or

cyberattacks. Blockchain’s decentralized nature ensures that even

if some nodes go offline, the network remains operational.

 3. Unbanked Populations: Over 1.7 billion people worldwide lack

access to traditional banking systems, according to the World

Bank’s Global Findex database. Blockchain projects such as

Binance’s Blockchain Charity Foundation (BCF) aim to bridge this

gap by providing decentralized financial tools and transparent

donation mechanisms to underserved communities, enabling

access to basic services like savings, remittances, and microloans.

 Examples of Efficient Transactions in Practice

• Remittances: Blockchain platforms like Ripple and Stellar have

revolutionized remittances, enabling instant, low-cost transfers for

migrant workers sending money to their families. This efficiency

reduces dependence on traditional remittance services with

high fees.

Chapter 4 pros and Cons of BloCkChain

153

• Supply Chain Payments: Blockchain automates payments in supply

chains using preset conditions.

• Decentralized Finance (DeFi): DeFi platforms use blockchain to

offer financial services like lending, borrowing, and trading without

intermediaries. Protocols like Aave and Uniswap process millions of

transactions daily with minimal fees and near-instant settlements.

• Gaming and Digital Goods: Blockchain is transforming the gaming

industry by enabling fast, cost-effective transactions for in-game

assets and NFTs. Platforms like Enjin and Immutable X allow gamers

to trade assets seamlessly without centralized platforms taking

significant cuts.

 Innovative Use Cases for Transaction Efficiency

 1. Micropayments in IoT: IoT devices can use blockchain for

automated micropayments. For instance, electric vehicles can

pay for charging at stations based on real-time energy usage, with

payments processed instantly on the blockchain.

 2. Healthcare Billing: Blockchain streamlines healthcare billing

by automating insurance claims and reducing administrative

overhead. Smart contracts ensure that providers are paid instantly

once services are verified.

 3. E-Government Services: Governments are exploring blockchain

for efficient service delivery. For example, Estonia uses blockchain

for e-residency programs, enabling fast and secure processing of

permits and licenses.

Chapter 4 pros and Cons of BloCkChain

154

 Challenges to Achieving Efficiency

Despite its promise, blockchain faces challenges in delivering consistent Traditional

transaction systems:

 1. Scalability Constraints: High transaction volumes can lead to

congestion on popular blockchains like Ethereum, increasing fees

and delays. Solutions like Layer 2 protocols (e.g., Polygon) and

sharding are being developed to address these issues.

 2. Energy Consumption: Proof-of-Work (PoW) systems, such as

Bitcoin, consume vast amounts of energy. Transitioning to more

sustainable consensus mechanisms like Proof-of-Stake (PoS) is

critical for long-term efficiency.

 3. Complexity for Users: The technical complexity of blockchain

often prevents it from achieving its efficiency benefits. Simplifying

user interfaces and educating the public are essential to increase

adoption.

 4. Regulatory Barrier: Legal uncertainty in many jurisdictions can

slow blockchain adoption, particularly in industries like finance

and healthcare that are heavily regulated.

 Future Trends in Blockchain Efficiency

 1. Advancements in Consensus Protocols: Emerging protocols like

Proof of History (PoH) and DAG-based blockchains promise to

enhance speed and scalability while reducing costs.

 2. Integration with AI: Combining blockchain with artificial

intelligence can optimize transaction routing and resource

allocation, further improving efficiency.

 3. Cross-Chain Solutions: Technologies like Polkadot and Cosmos

are enabling interoperability between blockchains, ensuring

efficient transactions across networks.

Chapter 4 pros and Cons of BloCkChain

155

 Transparency in Blockchain

Transparency is one of the core principles of blockchain technology. By design,

blockchain’s open and immutable ledger promotes trust among participants, ensures

accountability, and lowers the risk of fraud. This transparency has applications across

industries and is a key driver for blockchain’s adoption. However, its implications extend

far beyond operational benefits, transforming how systems operate and interact.

 Public Ledger Benefits

 1. Immutable Recordkeeping: Every transaction on a blockchain

is permanently recorded and cannot be altered retroactively. This

immutability ensures that the transaction history is accurate and

provable, providing a reliable source of truth for all stakeholders

involved.

 2. Auditability: Blockchain’s transparency allows stakeholders to audit

transactions easily. Businesses can ensure compliance with regulatory

standards, while individuals can verify their own transactions without

relying on intermediaries. Audits that traditionally required weeks can

now be performed in real time with blockchain.

 3. Trust Among Participants: In traditional systems, trust is

often placed in centralized authorities. Blockchain eliminates

this dependency by providing a transparent platform where all

participants can independently verify data. This feature reduces

the risk of fraud and enhances collaboration between parties.

 4. Consensus Validation: Transactions on a blockchain are

validated through consensus mechanisms, ensuring that all

entries on the ledger are verified by multiple participants. This

adds an additional layer of transparency and accountability,

reinforcing trust across the network.

 5. Enhanced Collaboration: Transparency enables seamless

collaboration across organizations. For example, in a multi-party

supply chain, all participants can access the same set of verified

data, reducing disputes and improving operational efficiency.

Chapter 4 pros and Cons of BloCkChain

156

 Applications in Various Sectors

Blockchain’s transparency has transformative potential across multiple industries:

• Supply Chain: Blockchain enables end-to-end visibility of supply

chains. Consumers can verify the authenticity of products, ensuring

they meet ethical and quality standards. For example, Walmart uses

blockchain to track food products, enhancing safety and reducing

waste. Similarly, companies like Provenance allow users to trace the

journey of goods from origin to consumer.

• Healthcare: Transparent medical records on blockchain ensure

accurate diagnoses and reduce medical errors. Patients can share

their records securely with providers, fostering collaboration and

improving outcomes.

• Government and Public Records: Blockchain-based systems

for public records, such as land registries or voting, increase

trust in governmental processes. Citizens can access inviolable

records, enhancing transparency and accountability. Estonia, for

instance, has implemented blockchain to secure and streamline its

e-governance services, including tax filings and voting systems.

• Corporate Governance: Companies are leveraging blockchain

to enhance transparency in corporate governance. For example,

shareholder voting and decision-making processes can be recorded

on a blockchain to prevent tampering and improve stakeholder

trust. Publicly available data can also help investors make informed

decisions.

• Education: Academic institutions may employ blockchain

technology to issue and authenticate credentials, including degrees

and certifications. By enhancing transparency, this approach

mitigates the risk of fraud and streamlines the hiring process,

enabling employers to promptly access verified qualifications.

Chapter 4 pros and Cons of BloCkChain

157

 Innovative Use Cases

 1. Charitable Donations: Blockchain ensures transparency in

donations by allowing contributors to track how their funds are

used. Platforms like Binance Charity provide real-time updates

on fund allocation, increasing donor trust and minimizing

administrative overhead.

 2. Sustainable Practices: Transparency in blockchain helps

organizations track and report their environmental impact.

For instance, blockchain can verify carbon offsets, ensuring

companies meet sustainability goals without greenwashing.

Projects like Energy Web Token focus on creating transparent

energy markets.

 3. Intellectual Property Rights: Blockchain-based platforms

enable artists and creators to record proof of ownership and

track royalties. This ensures fair compensation, reduces disputes,

and simplifies licensing processes. Examples include platforms

like Ujo Music and Audius that focus on musicians and content

creators.

 4. Transparency in Food Safety: Blockchain platforms such as

IBM Food Trust facilitate detailed traceability of food products,

allowing stakeholders to identify sources of contamination

throughout the supply chain.

 Challenges of Blockchain Transparency

While transparency is a major advantage, it also presents certain challenges:

 1. Privacy Concerns: While transparency benefits organizations,

it may conflict with individual privacy needs. Public blockchains

expose transaction details, potentially revealing sensitive user

information. Privacy-preserving technologies like zero- knowledge

proofs (ZKPs) and private blockchains aim to address this issue by

allowing data validation without exposing the data itself.

Chapter 4 pros and Cons of BloCkChain

158

 2. Complex Implementation: Integrating blockchain’s transparency

with existing systems can be technically challenging.

Organizations must align blockchain data with legacy systems

while complying with regulatory requirements. This often requires

significant investment in technology and expertise.

 3. Data Overload: As blockchain networks grow, the increasing

volume of transaction data can lead to storage and scalability

challenges. Efficient data compression and off- chain solutions are

essential for maintaining transparency without overwhelming the

network.

 4. Misinterpretation of Data: Transparent records alone are not

sufficient; stakeholders must have the tools and expertise to

interpret blockchain data correctly. Without this, transparency

may lead to confusion or misuse, especially in complex systems.

 5. Balancing Transparency with Security: Exposing too much

data can make systems vulnerable to attacks. Finding the right

balance between transparency and security is critical for effective

blockchain implementation.

 Future Trends in Blockchain Transparency

As blockchain technology continues to evolve, new innovations are emerging that

further enhance transparency while addressing privacy and scalability concerns. The

following trends highlight how blockchain transparency is expected to develop in the

coming years:

 1. Decentralized Identifiers (DIDs): Combining transparency

with privacy, DIDs allow users to control their identity while

participating in transparent blockchain ecosystems. This

innovation is particularly relevant in sectors like healthcare and

finance, where identity verification is critical.

 2. Integration with AI: Artificial intelligence can analyze blockchain

data, identifying patterns and anomalies and providing insights

for decision-making. AI tools can assist organizations in obtaining

actionable intelligence from transparent blockchain records.

Chapter 4 pros and Cons of BloCkChain

159

 3. Regulatory Support: Governments are increasingly recognizing

the potential of blockchain transparency. Developing global

standards for blockchain implementation will ensure uniformity

and trust across jurisdictions. Initiatives like the European Union’s

Markets in Crypto-Assets (MiCA) framework are steps in this

direction.

 4. Hybrid Models: Combining public and private blockchains allows

organizations to balance transparency and privacy, optimizing

use cases for specific industries. Hybrid models are particularly

valuable for applications like supply chain management, where

certain data must remain confidential.

 5. Tokenization for Transparency: Tokenizing assets like real estate

or commodities on a blockchain enables transparent ownership

tracking and simplifies transactions. This approach is being

explored by industries like real estate and art.

 6. Interoperable Systems: Cross-chain interoperability solutions,

such as Polkadot and Cosmos, are enabling seamless data sharing

across multiple blockchains. This enhances transparency in multi-

network environments, such as global supply chains.

 Cost Considerations

Cost is a significant factor in evaluating the adoption and implementation of blockchain

technology. While blockchain offers many advantages, understanding its cost structure

is essential for determining its feasibility and scalability in specific applications. Beyond

the technical expenses, organizations must consider long-term operational costs,

environmental impact, and the potential for cost savings through efficiency gains.

Chapter 4 pros and Cons of BloCkChain

160

Figure 4-3. Blockchain-Layered Architecture

 Initial Setup and Operational Costs

 1. Infrastructure Costs: Setting up a blockchain network requires

substantial investment in hardware and software infrastructure.

Nodes must be equipped with high-performance servers, robust

storage solutions, and reliable internet connectivity to manage the

blockchain’s increasing demands. For instance:

Chapter 4 pros and Cons of BloCkChain

161

• Public blockchains rely on decentralized nodes spread globally,

which necessitate infrastructure investments from individual

participants or mining pools.

• Private blockchains used in enterprises often require centralized

infrastructure with severe security measures, which can

significantly increase costs.

 2. Development Costs: Building blockchain-based solutions

requires specialized expertise. Developers proficient in blockchain

programming languages like Solidity (Ethereum), Rust (Solana),

or Go (Hyperledger Fabric) are in high demand and command

premium salaries. Additionally, smart contract audits, required to

ensure security and functionality, add to development expenses.

 3. Integration Costs: Integrating blockchain systems with legacy

infrastructure is a complex process. Organizations must invest in

middleware solutions, API development, and customizations to

ensure seamless interoperability. For example:

• Financial institutions may need to align blockchain solutions

with their existing payment processing systems.

• Supply chain companies often require integrations with IoT

devices for real-time tracking and data synchronization.

 4. Energy Consumption: Blockchain systems that rely on Proof

of Work (PoW) consensus mechanisms consume vast amounts

of energy. Bitcoin mining, for instance, uses electricity on par

with some small countries. Transitioning to energy- efficient

alternatives like Proof of Stake (PoS) or Delegated Proof of Stake

(DPoS) can mitigate these costs, but such changes require time

and investment.

Chapter 4 pros and Cons of BloCkChain

162

 Cost Savings Through Efficiency

Despite the high initial investments, blockchain technology offers significant cost-saving

opportunities over time. These efficiencies are particularly impactful in industries

plagued by inefficiencies, intermediaries, and fraud.

 1. Reduced Intermediary Fees: Blockchain eliminates the need for

intermediaries, reducing transaction costs across various sectors:

• Finance: Cross-border payments using Ripple or Stellar bypass

traditional banks and payment processors, resulting in lower fees.

• Supply Chain: Automated payments through smart contracts

eliminate the need for third-party escrow services.

 2. Fraud Mitigation: Blockchain’s tamper-proof ledger reduces the

risk of fraud, particularly in sectors like insurance and finance.

Fraud prevention not only saves money but also enhances trust

and reduces litigation costs.

 3. Automation with Smart Contracts: Smart contracts streamline

operations by automating repetitive tasks. For example:

• Insurance claims can be processed automatically when

predefined conditions are met, reducing the need for manual

verification.

• Payroll systems using smart contracts ensure timely and accurate

payments without human intervention.

 4. Operational Efficiency: Blockchain’s transparency reduces time

spent on audits and reconciliations. Organizations can verify

transactions in real time, speeding up processes and cutting down

labor costs.

 Balancing Costs and Benefits

Organizations must weigh the costs of implementing blockchain against its potential

benefits. This evaluation requires a detailed understanding of both immediate and long-

term implications:

Chapter 4 pros and Cons of BloCkChain

163

• Scalability Challenges: Large-scale blockchain implementations

can be resource-intensive. Layer 2 solutions, like Polygon for

Ethereum, and innovations like sharding help address scalability

while reducing costs.

• Energy Transition: Moving away from energy-intensive PoW

systems to PoS or hybrid models can significantly cut operational

expenses.

• Industry-Specific Suitability: Blockchain is not a one-

size-fits-all solution. Industries with high transparency and

decentralization needs, such as finance and healthcare, benefit

the most. In contrast, sectors that have centralized operations

may find traditional databases to be more cost-effective.

 Environmental Costs

The environmental impact of blockchain, particularly PoW systems, is a growing

concern. The high energy consumption associated with mining contributes to carbon

emissions, which offsets the cost benefits of blockchain. Efforts to address these

challenges include:

 1. Carbon-Neutral Mining: Mining operations powered by

renewable energy sources can reduce the environmental

footprint. Companies like CleanSpark are exploring sustainable

solutions for Bitcoin mining.

 2. Energy-Efficient Consensus Mechanisms: Proof of Stake (PoS),

used by Ethereum 2.0, significantly reduces energy requirements

compared to PoW. Other alternatives, like Proof of Authority

(PoA), offer similar benefits.

 3. Token Incentives for Sustainability: Some blockchains

incentivize environmentally friendly practices by rewarding

participants with tokens for using renewable energy or reducing

emissions.

Chapter 4 pros and Cons of BloCkChain

164

 Case Studies of Cost-Saving Implementations

Several organizations across diverse sectors have successfully implemented blockchain

solutions to cut costs, improve efficiency, and eliminate intermediaries.

In finance, RippleNet has emerged as a leader in reducing the cost of cross-border

payments. By enabling instant settlements and bypassing intermediary banks, RippleNet

streamlines global transactions and lowers fees. Similarly, JP Morgan’s Onyx leverages

blockchain to enhance wholesale payment systems. Its implementation has led to

significant annual savings by reducing friction and improving settlement speeds.

The healthcare sector also benefits from blockchain’s potential to lower

administrative overhead. For example, MediBloc facilitates secure, immutable sharing

of medical records between patients and providers, minimizing paperwork and

accelerating care coordination. Chronicled, on the other hand, uses blockchain to track

pharmaceutical supply chains. This not only improves traceability but also reduces

financial losses due to counterfeiting and errors.

In the supply chain domain, Walmart employs blockchain to trace the origin

of food products. This system helps reduce food waste, enhances product safety,

and significantly cuts down on manual auditing expenses. Meanwhile, Maersk, in

collaboration with IBM, launched the TradeLens platform to digitize and automate

global shipping documentation. This innovation simplifies the movement of goods

across borders and leads to substantial operational savings.

Lastly, in the energy sector, the Energy Web Foundation enables peer-to-peer

energy trading using blockchain. By decentralizing energy markets and automating

transactions, utility companies lower their overhead costs while facilitating more

efficient renewable energy distribution.

 Future Trends in Cost Management

 1. Open-Source Frameworks: Projects like Hyperledger Fabric

allow organizations to build custom blockchain solutions without

incurring high licensing fees.

 2. Tokenized Economies: Blockchain ecosystems increasingly

use token incentives to offset operational costs. For example,

participants earn tokens for contributing to network security or

processing transactions.

Chapter 4 pros and Cons of BloCkChain

165

 3. Interoperable Blockchains: Technologies like Polkadot and

Cosmos enable cross- chain data sharing, reducing duplication

and infrastructure costs.

 4. AI Integration: Combining blockchain with artificial intelligence

optimizes resource allocation and reduces operational

inefficiencies, particularly in complex systems like supply chains

and financial markets.

 Transaction Speed

Transaction speed is a critical metric for evaluating the performance of blockchain

systems. Table 4-3 compares transaction speed and settlement time across various

systems.

While blockchain offers numerous advantages, its transaction processing speed

varies significantly based on the underlying architecture, consensus mechanisms, and

network design. Improving transaction speed is essential for achieving scalability and

meeting the demands of real-world applications.

This section explores the factors affecting speed, comparisons with traditional

systems, innovative blockchain solutions, and the challenges and opportunities ahead.

 Factors Affecting Speed

 1. Consensus Mechanism: The choice of consensus protocol plays a

major role in determining transaction speed. For example:

Table 4-3. Blockchain and Traditional System Speed Comparison

Blockchain/System Consensus Mechanism Avg TPS Settlement Time

Bitcoin proof of Work (poW) 7 ~10 minutes

ethereum (l1) proof of stake (pos) 15–30 1–5 minutes

solana proof of history 65,000+ ~1 second

Visa Centralized 24,000 real-time

Chapter 4 pros and Cons of BloCkChain

166

• Proof of Work (PoW): Used by Bitcoin, PoW requires complex

computations for block validation, resulting in slower transaction

speeds (approximately 7 transactions per second, or TPS).

• Proof of Stake (PoS): PoS systems, like Ethereum 2.0, achieve

higher transaction speeds by selecting validators based on

their stake in the network, bypassing the energy-intensive

computations of PoW.

• Delegated Proof of Stake (DPoS): Platforms like EOS use DPoS

to achieve consensus more efficiently, supporting thousands of

TPS by delegating validation to selected nodes.

 2. Network Scalability: The ability of a blockchain to handle

increasing numbers of transactions depends on its scalability.

Solutions like sharding, sidechains, and Layer 2 protocols (e.g.,

Lightning Network) enhance scalability and improve transaction

throughput, allowing blockchains to manage larger volumes of

data efficiently.

 3. Block Size and Time: Larger block sizes allow more transactions

per block, while shorter block times reduce the interval

between validations. However, increasing block size can affect

decentralization, as it requires more storage and bandwidth from

network participants. Ethereum, for instance, balances these

factors by dynamically adjusting gas limits based on network

activity.

 4. Network Congestion: High transaction volumes during peak

periods can overwhelm blockchain networks, slowing down

processing times. This is particularly evident on platforms like

Ethereum during token launches or NFT drops. Congestion results

in higher fees and delayed confirmations, prompting the need for

scalability solutions.

Chapter 4 pros and Cons of BloCkChain

167

 Comparisons with Traditional Systems

 1. Banking Systems: Traditional financial systems like Visa handle

up to 24,000 TPS, far surpassing the speeds of early blockchain

systems. However, newer blockchains are closing the gap, with

platforms like Solana achieving speeds of 65,000 TPS, making

them viable alternatives for financial applications.

 2. Settlement Times: Blockchain provides faster settlement times

compared to traditional banking systems. While bank transfers

can take days to clear, blockchain transactions settle in minutes

or even seconds, depending on the network. This advantage is

particularly valuable for cross-border payments.

 3. Real-Time Processing: Blockchain’s real-time transaction

processing, enabled by platforms like Avalanche and Algorand,

rivals and often exceeds the efficiency of traditional systems in

specific use cases, such as decentralized finance (DeFi).

 Examples of High-Speed Blockchains

 1. Solana: Solana achieves speeds of up to 65,000 TPS using its

innovative Proof of History (PoH) mechanism, which timestamps

transactions before they are processed. This makes it ideal for

applications requiring rapid processing, such as gaming and DeFi.

 2. Avalanche: Avalanche utilizes a novel consensus protocol to

achieve sub-second finality and high throughput. Its architecture

supports parallel transaction processing, enhancing speed and

scalability.

 3. Polygon: As a Layer 2 solution for Ethereum, Polygon processes

transactions off- chain and then finalizes them on the Ethereum

mainnet, significantly improving speed and reducing costs.

 4. Ripple (XRP): Ripple’s consensus mechanism enables fast

processing of cross-border payments, making it a leader in

financial transactions with settlement times of just a few seconds.

Chapter 4 pros and Cons of BloCkChain

168

 Challenges in Achieving High Speed

 1. Trade-Offs with Decentralization: Increasing transaction speed

often requires reducing the number of nodes participating in

consensus, which can compromise decentralization and security.

Striking a balance between speed and decentralization is crucial

for blockchain adoption.

 2. Energy Consumption: High-speed blockchains must address

energy efficiency concerns, particularly those using resource-

intensive consensus mechanisms like PoW. Transitioning to

greener alternatives is vital for long-term sustainability.

 3. Technical Complexity: Implementing advanced scalability

solutions, such as sharding and rollups, introduces complexity

and increases the risk of software bugs or vulnerabilities. These

solutions require careful testing and monitoring.

 4. Interoperability Barriers: Ensuring seamless communication

between high- speed blockchains and other networks is essential

to maximize their potential while maintaining transaction

efficiency. Technologies like Polkadot and Cosmos are addressing

these challenges by enabling cross-chain compatibility.

 Innovations in Driving Transaction Speed

 1. Layer 2 Solutions: Technologies like Optimistic Rollups and

zk-Rollups on Ethereum aim to increase transaction speeds by

processing transactions off-chain and finalizing them on-chain.

These solutions drastically reduce congestion and lower fees.

 2. Dynamic Sharding: Sharding techniques that dynamically adjust

based on network activity can optimize transaction processing

and improve scalability. Ethereum’s roadmap includes advanced

sharding to handle large-scale dApp ecosystems.

Chapter 4 pros and Cons of BloCkChain

169

 3. Cross-Chain Communication: Interoperability frameworks

like Polkadot and Cosmos enable high-speed blockchains to

communicate seamlessly, reducing bottlenecks and enhancing

efficiency across ecosystems.

 4. Hardware Acceleration: Utilizing specialized hardware, such

as blockchain accelerators and GPUs, can improve transaction

speeds and reduce latency in high- demand applications.

 Future Trends in Transaction Speed

 1. Blockchain-as-a-Service (BaaS): Cloud-based blockchain

services are optimizing transaction processing by leveraging

scalable infrastructure and distributed computing resources.

Providers like IBM and Microsoft are leading this trend.

 2. AI Integration: Artificial intelligence can optimize transaction

routing and resource allocation, further improving efficiency in

blockchain networks. AI-driven analytics also enhance congestion

management.

 3. Multi-layered Architectures: Combining multiple layers, such

as Layer 2 solutions and sidechains, creates a multi-tiered system

for handling transactions at different speeds and costs based on

priority.

 4. Decentralized Autonomous Organizations (DAOs): DAOs are

exploring efficient governance models to make decisions about

blockchain upgrades and consensus changes that enhance speed

without sacrificing security.

 Regulatory Challenges

The decentralized and borderless nature of blockchain technology presents unique

challenges in the regulatory landscape. Governments and regulatory bodies worldwide

are grappling with how to integrate blockchain into existing legal frameworks while

addressing its novel characteristics.

Chapter 4 pros and Cons of BloCkChain

170

These challenges range from legal ambiguity to technical limitations, influencing

the adoption and scalability of blockchain systems across industries. Table 4-4 outlines

different regulatory approaches to blockchain across countries.

Table 4-4. Global Regulatory Perspectives on Blockchain

Country Stance Key Action/Framework

Usa Mixed (state/federal

mismatch)

the seC treats many tokens as securities

eU proactive regulation MiCa framework

China Crypto ban, blockchain

promotion

Bsn (Blockchain service network)

el salvador pro-crypto Bitcoin adopted as legal tender

india Unclear, evolving proposed taxation on digital assets

south

korea

strict but supportive Virtual asset User protection act, centralized exchange

regulations

 Legal and Compliance Issues

 1. Lack of Standardized Regulations: Blockchain operates

across jurisdictions, each with its own regulatory requirements.

The absence of international standards leads to uncertainty

for businesses and developers, preventing the adoption of

blockchain. For example:

• In the United States, cryptocurrency exchanges face differing

state and federal regulations.

• In contrast, the European Union has introduced more centralized

frameworks, such as the Markets in Crypto-Assets (MiCA)

regulation.

 2. Classification of Digital Assets: Governments struggle to

categorize cryptocurrencies and tokens:

Chapter 4 pros and Cons of BloCkChain

171

• Currencies: Used for payments (e.g., Bitcoin and Litecoin).

• Commodities: Seen as store-of-value assets (e.g., Bitcoin).

• Securities: Investment vehicles requiring strict regulation (e.g.,

tokenized assets like ICOs). This lack of clarity complicates

tax reporting, investment regulations, and compliance across

borders.

 3. AML and KYC Requirements: Blockchain’s pseudonymous

nature raises concerns about its potential misuse for illicit

activities, such as money laundering or terrorism financing.

Regulatory bodies demand compliance with AML and KYC laws,

requiring exchanges and platforms to verify user identities.

 4. Smart Contract Legality: Smart contracts, which autonomously

enforce agreements, present unique legal challenges:

• How to assign liability for errors or disputes.

• The enforceability of self-executing contracts in traditional legal

systems.

 Case Studies of Regulatory Responses

 1. United States:

• The SEC considers many tokens securities, applying strict

regulations to their issuance and trading.

• Wyoming has emerged as a blockchain-friendly state, offering

legislation for digital asset banking and token issuance.

 2. European Union:

• The MiCA framework provides clarity on asset classification,

focusing on consumer protection and transparency.

• GDPR compliance remains a challenge, as blockchain’s

immutability conflicts with the “right to be forgotten.”

Chapter 4 pros and Cons of BloCkChain

172

 3. China:

• China has banned cryptocurrency trading but actively promotes

blockchain innovation in supply chain management, digital

identity, and state-backed digital currencies.

 4. El Salvador:

• El Salvador’s adoption of Bitcoin as legal tender exemplifies

proactive blockchain integration, leveraging Bitcoin for financial

inclusion and tourism.

 5. India:

• India’s regulatory approach has fluctuated, from bans on

cryptocurrency trading to proposals for taxation and regulatory

frameworks for digital assets.

 6. South Korea:

• South Korea has introduced strict cryptocurrency regulations,

focusing on user protection, requiring all exchanges to comply

with KYC and AML laws.

 Challenges in Regulatory Implementation

 1. Balancing Innovation and Control: Overregulation can inhibit

innovation, while underregulation allows for wrong use. Finding

the balance is particularly challenging in fast-evolving industries

like DeFi.

 2. Cross-Border Collaboration: Blockchain’s borderless nature

necessitates international cooperation. Inconsistent regulations

between countries create uncertainty for global businesses,

slowing blockchain’s adoption.

 3. Technical Complexity: Many policymakers lack the technical

expertise needed to understand blockchain’s intricacies, resulting

in ineffective or overly restrictive regulations.

Chapter 4 pros and Cons of BloCkChain

173

 4. Consumer Protection: Fraudulent ICOs and scams have

demonstrated the need for more effective consumer protection

strategies. However, implementing these without compromising

blockchain’s decentralization necessitates innovative approaches.

 Opportunities for Regulatory Advancement

 1. Regulatory Sandboxes: Countries like Singapore and the UK are

experimenting with regulatory sandboxes that allow blockchain

startups to test applications under relaxed regulations, fostering

innovation.

 2. Self-regulation: Blockchain communities and consortia are

establishing their own standards and best practices, reducing

the need for external enforcement. For example, the Enterprise

Ethereum Alliance (EEA) promotes enterprise-grade blockchain

adoption through standardized guidelines.

 3. Tokenized Compliance: Smart contracts enable automated

compliance processes, ensuring transactions adhere to regulatory

requirements in real-time. Tokens can prevent transactions to

unauthorized wallets or jurisdictions.

 4. Decentralized Identity Systems: Decentralized identifiers (DIDs)

provide a way to comply with KYC and AML requirements while

preserving user privacy, balancing regulatory and user needs.

 Future Trends in Regulation

 1. Global Frameworks: Organizations like the Financial Action Task

Force (FATF) are working toward global standards for blockchain

and cryptocurrency regulation, aiming to promote consistency

and reduce jurisdictional conflicts.

 2. Focus on Decentralized Finance (DeFi): Regulators are increasingly

scrutinizing DeFi platforms, balancing the need for innovation with

investor protection. Frameworks for auditing smart contracts and

ensuring platform security are expected to emerge.

Chapter 4 pros and Cons of BloCkChain

174

 3. AI and Blockchain Integration: Artificial intelligence tools are

assisting regulators by analyzing blockchain transactions for

suspicious activities, helping enforce regulations efficiently.

 4. Environmental Considerations: Governments may introduce

regulations encouraging energy-efficient protocols, penalizing

energy-intensive models like PoW while incentivizing greener

alternatives.

 Expanded Regulatory Applications

 1. Taxation: Governments are developing blockchain-specific tax

regulations, requiring exchanges and users to report capital gains,

staking rewards, and mining income.

 2. Digital Identity: Blockchain-based digital identity systems are

increasingly recognized for compliance purposes, allowing

individuals to verify identities securely without sharing

unnecessary information.

 3. Intellectual Property: Blockchain simplifies IP management,

with regulatory efforts focused on verifying digital ownership and

managing royalties.

 4. Voting and Governance: Regulatory bodies are exploring how

blockchain can secure voting processes, ensuring transparency

and minimizing fraud.

 Conclusion

Blockchain technology is reshaping how we store data, process transactions, and build

trust online. Its decentralized nature enhances security, reduces single points of failure,

and empowers users, offering real benefits across sectors like finance, healthcare, and

supply chain.

Chapter 4 pros and Cons of BloCkChain

175

Beyond decentralization, blockchain enables faster, cheaper, and more reliable

transactions while promoting transparency through immutable ledgers. However,

challenges such as high energy consumption, regulatory uncertainty, and scalability

must be addressed for broader adoption.

Ultimately, blockchain is not a one-size-fits-all solution but a powerful tool when

applied thoughtfully. As technology evolves, its potential to drive efficiency, trust, and

innovation continues to grow.

 Chapter Summary

Topic Key takeaways

Decentralization eliminates single points of failure, enhances security, and promotes censorship

resistance.

Security and

Resilience

Cryptographic structures and consensus mechanisms improve data integrity

and fault tolerance.

Transaction

Efficiency

reduces costs and speeds up processing by removing intermediaries and

enabling automation.

Transparency immutable public ledgers increase trust, support audits, and ensure

accountability across sectors.

Cost

Considerations

Upfront infrastructure and energy costs are high but offset by automation and

fraud reduction.

Transaction

Speed

performance varies across blockchains; layer 2 and new consensus protocols

enhance scalability.

Regulatory

Landscape

diverse global approaches; legal clarity and technical understanding are key for

adoption.

Chapter 4 pros and Cons of BloCkChain

177
© Soumaya Erradi 2025
S. Erradi, Web3 Development with Angular, https://doi.org/10.1007/979-8-8688-1886-8_5

CHAPTER 5

Blockchain Applications

 Introduction

Blockchain technology was once exclusively associated with cryptocurrencies, but now it

has become a powerful force that can reshape industries outside of finance. The concept

of decentralized networks is transforming how we manage identity, value, ownership,

and even governance. As seen previously, blockchain applications extend into sectors

like healthcare, supply chains, social media, finance, and even national infrastructure

projects.

In this chapter, we will explore the breadth of blockchain’s applications, with a focus

on the critical architectural changes it brings, the new user experiences it enables, and

the decision-making frameworks needed to choose the right blockchain for a project. We

begin by understanding the key differences between the traditional Web2 internet and

the emergent world of Web3, a shift that is foundational to every blockchain innovation.

 Differences Between Web2 and Web3

 Architectural Differences

The evolution of the internet from its early days to its current decentralized visions

has been marked by profound shifts not only in technology but also in philosophy. To

understand blockchain applications, one must first grasp the fundamental architectural

differences between Web2 and Web3. These differences go beyond technical details and

represent competing worldviews about trust, ownership, and control.

Web2, often called the Social Web,” is built on client-server models where users

interact with centralized services that handle authentication, data storage, and content

delivery. Every time a user logs into a platform like Facebook or Google, they interact

https://doi.org/10.1007/979-8-8688-1886-8_5#DOI

178

with servers that not only process their requests but also store and manage their data.

The centralized model ensures rapid response times, highly curated experiences, and

seamless integration of various services. However, at the core, it creates a significant

imbalance: users do not own the infrastructure nor the data they generate; they merely

access services under the terms dictated by corporations.

In contrast, Web3 introduces a peer-to-peer, decentralized architecture enabled

by blockchain networks. Here, the logic of the application, its backend, is no longer a

proprietary black box owned by a company but transparent, verifiable, and immutable

code living on a blockchain. Instead of relying on a corporation’s promise, users can

independently verify the behavior of smart contracts, check the integrity of transactions,

and directly own their digital interactions.

This decentralization is not just a technical rearrangement; it reconfigures power

dynamics. Control shifts away from institutions to individuals. It reduces the risks

associated with data breaches, censorship, and monopolistic behavior. However,

decentralization also introduces its own challenges: performance bottlenecks, user

complexity, and governance dilemmas.

The essence of architectural difference can be summarized clearly (Table 5-1):

Table 5-1. Key Differences Between Web2 and Web3

Aspect Web2 Web3

Ownership Platform owns content/data Users own their assets/data

Infrastructure Centralized servers Decentralized nodes

Identity Email, password, KYC Wallet address, decentralized ID

Trust Model Trust in platforms Trust in protocols and code

Data Storage Corporate-controlled databases Distributed ledgers, IPFS

Each of these aspects represents not just a technological switch but a different way of

relating to the internet itself. In Web2, users rent space. In Web3, users claim ownership.

In Web2, corporations arbitrate disputes. In Web3, the code becomes the arbiter.

This architectural transformation lays the foundation for everything else: the

way users experience the web, the strategies behind business models, and the legal

frameworks that regulate it.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

179

 User Experience Changes

The impact of architecture on users is profound, often in ways that are not immediately

apparent. As the backend changes, so does the frontend: the experience of interacting

with the internet shifts fundamentally in Web3. Figure 5-1 compares login flows between

Web2 and Web3 ecosystems.

Figure 5-1. Web2 vs. Web3 Login Flow

 Identity and Access

Perhaps the most immediate difference a user encounters when stepping into Web3 is

the concept of self-sovereign identity. In Web2, identities are federated and managed by

companies. Single sign-on (SSO) features enable users to log into a multitude of websites

using a Google or Facebook account. Recovery mechanisms are handled by these

entities. If a user forgets their password, recovery is a simple email away.

In Web3, identity is cryptographic and non-custodial. Users create a public-private

key pair, typically managed through a crypto wallet. If a user loses their private key, no

corporation can help them recover access. While this reality introduces responsibility

CHAPTER 5 BLOCKCHAIN APPLICATIONS

180

and risk, it also grants freedom: no single entity can revoke a user’s identity, censor their

account, or monetize their personal information without consent.

This shift towards cryptographic identities brings philosophical and practical

consequences. It returns ownership of identity to individuals but demands that users

become much more technically literate and cautious. Wallet management, seed phrase

backups, and understanding transaction approvals become everyday concerns.

 Financial Interactions

Financial behavior on the internet also changes dramatically in Web3. Where Web2

transactions require trust in intermediaries, such as banks, card processors, and escrow

services, Web3 enables peer-to-peer programmable money through cryptocurrencies.

Consider the act of sending money overseas. Web2 frequently demands bank wires,

currency conversions, anti-fraud verifications, and waiting periods. In Web3, the same

task can happen in minutes, using assets like Ethereum or stablecoins, with global

accessibility and minimal fees.

This is not merely about speed. Web3 takes down financial gatekeeping: anyone with

an internet connection and a crypto wallet can access global financial systems without

asking permission. Of course, this openness also introduces exposure to volatility,

scams, and poorly secured platforms.

 Content Ownership

The content users create, such as tweets, videos, and blogs, is largely platform property

in Web2. Users publish under terms-of-service agreements that allow companies to

monetize and even remove user content at their discretion.

In Web3, content is tokenized. A blog post could be an NFT. A music album could be

streamed directly via decentralized protocols with built-in royalty payments. Ownership

is cryptographically secured and verifiable on public blockchains. Monetization can

happen without platform intermediaries taking massive cuts. As shown in Figure 5-2,

Web3 redefines how content is owned and monetized.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

181

Figure 5-2. Content Ownership in Web2 vs. Web3

In short, Web3 alters the social contract between users and the internet itself. Users

of the internet are now more than just consumers: they are also owners and participants,

which comes with greater personal responsibility and learning curves.

 Case Studies of Transition

In order to gain a better understanding of how these differences are manifested in

practice, we can examine real-world examples of industries moving from Web 2 models

to Web 3 paradigms.

 1. Social Media: From Twitter to Lens Protocol

In Web2 social media like Twitter, users create content, but their

reach, visibility, and monetization are determined by platform

algorithms. Accounts can be suspended without warning. Content

can be demonetized. Data can be sold to advertisers without

explicit user consent.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

182

Lens Protocol, built on the Polygon blockchain, gives an idea of

a Web3 alternative. On Lens, profiles are NFTs. Posts are NFTs.

Users can port their social graph across applications. Monetization

flows directly between creators and fans. Ownership is real, not

metaphorical.

This shift empowers creators to truly own their presence but

introduces new challenges: onboarding complexity, gas fees, and

issues around content moderation without centralized authorities.

 2. Finance: from traditional banks to Decentralized Finance (DeFi)

Traditional banks serve as custodians, intermediaries, and

gatekeepers. DeFi platforms like Aave and Compound, by contrast,

offer lending, borrowing, and trading services through smart

contracts. No bank tellers, no account managers, no paperwork.

Users offer liquidity to earn yield, borrow assets against collateral,

and trade derivatives, with all these activities being managed by

open-source code. Access is global, permissionless, and 24/7.

However, DeFi also carries risks: smart contract bugs, volatile

assets, and immature insurance systems. The absence of traditional

consumer protections means users must rely on community audits,

personal research (DYOR), and careful risk management.

 3. Cloud Storage: From Dropbox to Filecoin/IPFS (Figure 5-3)

Dropbox epitomizes Web2 cloud storage: convenience at the cost

of trust. Users upload files to Dropbox’s servers, trusting that the

company will keep them safe, private, and accessible.

In Web3, decentralized storage solutions like Filecoin and IPFS

distribute encrypted fragments of files across hundreds or

thousands of independent nodes. New user responsibilities are

introduced when managing decentralized storage, including

retrieval, encryption keys, and storage contracts, as data becomes

harder to censor or lose.

Decentralized storage promotes resilience and user sovereignty

but can complicate access, recovery, and user interfaces.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

183

Figure 5-3. Industry Transitions from Web2 to Web3

 Choosing the Right Blockchain

In the ever-evolving world of blockchain applications, selecting the right blockchain

platform is one of the most critical decisions any developer, entrepreneur, or

organization must make. The selection of a blockchain has an impact on everything,

from scalability and security to user adoption and regulatory compliance. The success or

failure of a project can be determined by a strategic, long-term commitment, not just a

technical decision.

Before diving into specific blockchain options, it is important to establish a

comprehensive understanding of the factors that should guide this choice. Figure 5-4

outlines key decision criteria for selecting a blockchain platform.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

184

 Factors to Consider

When evaluating blockchain platforms, several key factors come into play. These

considerations are interconnected: prioritizing one often involves trade-offs with

another.

Figure 5-4. Blockchain Platform Considerations

 Scalability

Scalability refers to the blockchain’s ability to handle an increasing number of

transactions efficiently as the network grows. This is crucial for applications expecting

high user adoption or frequent transactions, such as gaming platforms, DeFi protocols,

or supply chain tracking systems.

Scalability metrics include:

 – Transactions per Second (TPS): How many transactions the blockchain can

process in a second.

 – Latency: The time it takes for a transaction to be confirmed.

 – Network Congestion Resistance: How well the blockchain handles high

transaction volumes without massive fee spikes or delays.

Example:

Ethereum’s early scalability issues, leading to extremely high gas fees during periods

of congestion, highlighted the need for Layer 2 solutions like optimistic rollups and

sidechains. Figure 5-5 compares scalability metrics across major blockchains.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

185

Figure 5-5. Blockchain Scalability Comparison

 Security

Security remains the backbone of blockchain integrity. Without robust security,

blockchains risk being attacked, manipulated, or rendered unreliable.

Security factors include:

 – Consensus Mechanism Robustness: How resistant is the blockchain to

attacks such as a 51% attack?

 – Validator Diversity: How decentralized is the network’s node/validator

structure?

 – Auditability: Are smart contracts and platform updates subject to rigorous

external audits?

Example:

Bitcoin’s Proof of Work system, while energy-intensive, remains arguably the most

battle-tested and secure public network to date.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

186

Important Note Security often comes at the cost of scalability and performance,

a trade-off famously known as the Blockchain Trilemma:

“You can optimize for two out of three: decentralization, scalability, and security,

but never all at once.”

 Decentralization

Decentralization is a philosophical and practical principle: it refers to how much control

or influence is distributed across the network’s participants.

Questions to ask:

 – How easy is it to run a node or validator?

 – How geographically and institutionally diverse are the validators/miners?

 – Does any single entity or consortium hold disproportionate influence?

Example:

Solana, despite its high TPS, has faced criticism for its validator set being relatively

small compared to Bitcoin or Ethereum, raising questions about decentralization

robustness.

 Developer Ecosystem

A blockchain’s future depends heavily on its developer community.

Signs of a healthy developer ecosystem:

 – Abundant tools, SDKs, and APIs.

 – Vibrant open-source communities and hackathons.

 – Educational resources and developer incentives.

Example:

Ethereum boasts the largest developer ecosystem in blockchain, fueling innovations

in DeFi, NFTs, and DAOs.

A strong ecosystem not only accelerates development but also ensures future

support, upgrades, and security patches.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

187

 Costs

Transaction fees, deployment fees, and maintenance costs vary dramatically across

blockchains.

Projects need to factor in not just today’s fees but future projections as adoption

grows. Table 5-2 compares average transaction fees across leading blockchain platforms.

Table 5-2. Blockchain Fees Comparison

Blockchain Average Transaction Fee

(approx.)

Notes

Bitcoin $1–$20 Depends heavily on congestion.

Ethereum

(Layer 1)

$2–$100 High fees during congestion; rollups help

reduce costs.

Polygon <$0.01 Extremely cheap transactions on Layer 2.

Solana <$0.001 Very low fees, but it depends on network

reliability.

 Regulatory Environment

Some blockchains may be more sensitive to regulatory pressures based on their

architecture, anonymity features, or centralization levels.

Key considerations:

 – Does the blockchain comply with KYC/AML requirements?

 – Are privacy features (e.g., ZCash and Monero) likely to trigger regulatory

scrutiny?

 – How adaptable is the blockchain if regulations evolve?

Example:

Projects like Circle’s USDC stablecoin chose to launch on Ethereum, Polygon, and

Solana, chains considered more “regulator-friendly” compared to fully privacy-focused

chains like Monero.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

188

 Interoperability

In an increasingly multi-chain world, the ability for a blockchain to interact with others

(interoperability) is vital.

Key questions:

 – Can the blockchain bridge assets easily to other chains?

 – Are standards like ERC-20, ERC-721, or Cosmos IBC supported?

 – Is cross-chain communication a priority in its roadmap?

Example:

Polkadot was designed explicitly to support interoperable “parachains,” while

Cosmos offers the IBC (Inter-Blockchain Communication) protocol to facilitate chain-

to- chain messaging.

 Comparisons of Popular Blockchains

Let’s now compare some of the most influential blockchains based on the factors

outlined above. Table 5-3 compares leading blockchain platforms based on their

strengths and weaknesses.

Table 5-3. Comparison of Popular Blockchains

Blockchain Strengths Weaknesses

Bitcoin Ultimate security and decentralization; proven

stability.

Limited programmability; slow

transactions.

Ethereum Massive developer community; smart contract

leader; highly decentralized.

High fees; scalability still improving.

Solana High TPS; low transaction costs. Network outages; decentralization

concerns.

Avalanche Subnets for custom chains; fast finality. Still growing developer ecosystem.

Polygon Low-cost Ethereum scaling; easy onboarding. Depends heavily on Ethereum security.

Polkadot True interoperability focus; scalable. Complex architecture; longer learning

curve.

Algorand High throughput, near-instant finality. Smaller community compared to

Ethereum.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

189

 Decision-Making Framework

Given the complexity of options, how should individuals or organizations systematically

choose the right blockchain for their needs?

Here’s a simple, adaptable framework (Figure 5-6):

 1. Define Your Priorities

Start by ranking what matters most to your project (Table 5-4):

Table 5-4. Defining Project Priorities When Choosing a Blockchain

Priority Examples

Scalability High TPS needed for a DeFi platform.

Security Enterprise data management project.

Low fees Micropayments system or gaming economy.

Decentralization Privacy-focused social media app.

Clarify your “must-haves” versus “nice-to-haves.”

 2. Match Platform Strengths to Needs

Using the comparison table earlier, shortlist 2–3 blockchains that

align best with your priorities.

Example:

If you need extreme scalability and cheap fees: Solana or Polygon.

If decentralization and composability are critical: Ethereum.

 3. Pilot and Test

Before full commitment, develop a Minimum Viable Product

(MVP) or pilot application on the shortlisted platforms. Measure

performance: transaction times, costs, developer ease, and

ecosystem support.

Pilot data can save you months of regret later.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

190

 4. Consider Long-Term Evolution

Blockchains evolve. Upgrades like Ethereum’s shift to Proof

of Stake (Merge), the rise of Layer 2s, and new consensus

innovations like Danksharding will change the landscape.

Choose a platform not only for today’s needs but also for its

roadmap alignment with your future vision.

Figure 5-6. Blockchain Framework Priorities

 Introduction to Ethereum

Ethereum is a milestone in the evolution of blockchain technology. While Bitcoin

demonstrated that it was possible to create a decentralized digital currency, Ethereum

went further: it offered the first decentralized computing platform, allowing anyone to

create and deploy complex applications on top of a blockchain.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

191

 Overview of the Ethereum Platform

Ethereum was born out of necessity. In 2013, Vitalik Buterin, a programmer deeply

involved with Bitcoin development, noticed a limitation: Bitcoin’s scripting system was

too rigid. It could only support simple transaction logic such as sending and receiving

currency, but not complex interactions such as financial contracts, decentralized

organizations, or identity management.

Buterin, frustrated, suggested a blockchain that could run smart contracts—self-

executing code not needing third parties. This led to the Ethereum whitepaper published

later that year.

In 2014, Ethereum raised over $18 million in a public crowdsale, one of the first

examples of a blockchain-based funding model. A year later, in July 2015, Ethereum’s

first live version, known as Frontier, launched. It was basic but functional, setting the

stage for the explosion of decentralized applications (DApps) we see today. Figure 5-7

highlights the milestones in Ethereum’s development.

Ethereum was a new type of platform that extended blockchain technology to every

type of human interaction, not just another cryptocurrency.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

192

Figure 5-7. The Creation of Ethereum

 Ethereum’s Vision

The vision behind Ethereum can be summarized simply: to be the world’s decentralized

computer. Instead of relying on centralized companies to host websites or apps, Ethereum

allows these applications to be hosted and operated by thousands of nodes globally.

This approach has profound implications:

 – Resilience: Applications are harder to shut down because there is no single

point of failure.

 – Censorship Resistance: No company or government can arbitrarily block

users or activities.

 – Innovation: Developers are free to create applications that challenge tradi-

tional industries, from finance to art to governance.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

193

The structure of how we interact online is being redefined by this transformation,

which is not just technological. Trusted intermediaries such as tech giants, payment

providers, and social networks are relied upon by users in a Web2 world to facilitate

communication, transactions, and content sharing.

In a Web3 reality powered by Ethereum, the reliance on these gatekeepers is

dismantled. Ownership, governance, and control revert back to the users themselves.

Data becomes portable and open. Financial services become accessible without

permission. Creative expression flourishes without centralized curation.

Ethereum provides not just new tools but also a new digital society. Figure 5-8

illustrates Ethereum’s role in reshaping the digital economy.

Figure 5-8. Ethereum’s Role in Web3

 Key Features and Functionalities

Ethereum’s design is a fusion of multiple innovations, each carefully crafted to

extend the possibilities of what a blockchain can achieve. Ethereum aimed to be a

programmable platform that could be used to build entire decentralized ecosystems,

not just payments like Bitcoin. This ambition required not just a native currency but a

way to process arbitrary computation, secure complex digital contracts, and empower

global collaboration. Every core component of Ethereum, from its virtual machine

to its token standards, contributes to this broader mission of building an open and

decentralized future.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

194

Let’s explore them in detail (Figure 5-9):

Figure 5-9. Core Components of Ethereum

 Smart Contracts

Smart contracts are the cornerstone of Ethereum. These are self-executing programs

stored on the blockchain, running exactly as programmed without any possibility of

downtime, censorship, or fraud.

When we say “smart contract,” think of:

 – An automated escrow service, releasing payment only when a delivery is

confirmed.

 – A decentralized voting system that automatically counts and validates votes.

 – A digital rights management system that distributes royalties transparently.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

195

Each smart contract operates under deterministic rules. Once a smart contract is

deployed, it is irreversible and cannot be altered. This immutability builds trust because

users know that the code, not the developer, controls the contract’s behavior. Figure 5-10

illustrates how smart contracts are deployed and executed.

Moreover, every smart contract is transparent: anyone can inspect the code and

audit its behavior before interacting with it.

Example:

A decentralized lottery DApp uses a smart contract to collect bets, select a random

winner, and distribute prizes, without any human management.

Figure 5-10. How Ethereum Smart Contracts Work

 Ethereum Virtual Machine (EVM)

At the heart of Ethereum lies the Ethereum Virtual Machine (EVM), a decentralized

computation engine.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

196

The EVM plays a critical role:

 – It standardizes the execution of smart contracts across different machines.

 – It isolates contracts from each other to prevent one faulty contract from

crashing the network.

 – It ensures deterministic execution: every node should arrive at the same result

after running the same contract.

The EVM is often called the global computer because, no matter where you are on

the planet, every Ethereum node runs the same EVM code, ensuring global consensus

(Figure 5-11).

To prevent abuse, Ethereum charges a fee for computation (measured in gas). This

means that complex operations are more expensive, discouraging inefficient code and

resource waste.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

197

Figure 5-11. The Ethereum Virtual Machine (EVM) in a Smart Contract Process

 Ether (ETH)

Ether (ETH) is the native currency of Ethereum, and it serves multiple essential

purposes:

 – Transaction Fees: Users pay ETH to submit transactions or deploy smart

contracts.

 – Staking: Validators stake ETH to secure the network in Ethereum 2.0 (Proof

of Stake).

CHAPTER 5 BLOCKCHAIN APPLICATIONS

198

 – Value Transfer: ETH functions like Bitcoin, as a store of value and medium of

exchange.

Since the EIP-1559 upgrade in August 2021, part of every transaction fee is burned

(destroyed), reducing the overall supply of ETH and potentially making it deflationary

over time.

Gas System in Ethereum (Figure 5-12):

 – Base Fee: Mandatory minimum fee burned by the network.

 – Tip: Optional bonus for faster processing, paid to validators.

This two-tiered fee system stabilizes gas fees and incentivizes honest behavior

among validators.

Figure 5-12. Ether and the Gas System

 Proof of Stake (PoS)

Ethereum’s transition to Proof of Stake (PoS) with The Merge in September 2022 marked

one of the most important technological upgrades in blockchain history.

Under PoS:

 – Validators are selected randomly to propose new blocks.

 – Other validators attest (verify) that a proposed block is valid.

 – Validators must stake ETH as a security deposit; bad behavior (like creating

fraudulent blocks) results in losing part or all of the staked ETH (called

slashing).

CHAPTER 5 BLOCKCHAIN APPLICATIONS

199

Impact of PoS:

 – Reduced energy consumption by 99.95%.

 – Increased accessibility: anyone can become a validator by staking ETH.

 – Improved network security by introducing economic penalties for bad actors.

PoS rewards honest validators and penalizes dishonest ones. Figure 5-13 explains

Ethereum’s PoS consensus process.

Figure 5-13. Ethereum Proof of Stake Process

 Layer 2 Scaling Solutions

Ethereum’s popularity has caused scalability bottlenecks, particularly high gas fees

during periods of heavy use.

Layer 2 solutions offer a remedy. They process transactions off-chain (or semi-off-

chain) before posting final results back to Ethereum’s main chain.

Main Layer 2 Technologies:

 – Optimistic Rollups: Assume transactions are valid and correct them if fraud is

detected later.

(Example: Optimism, Arbitrum)

 – ZK-Rollups: Use zero-knowledge proofs to prove correctness without reveal-

ing transaction details.

(Example: zkSync, StarkNet)

CHAPTER 5 BLOCKCHAIN APPLICATIONS

200

Layer 2 solutions:

 – Increase transaction throughput (thousands of transactions per second).

 – Drastically reduce fees.

 – Maintain Ethereum’s underlying security guarantees.

In short, Layer 2 scaling makes Ethereum affordable and scalable for global use.

 Token Standards

Ethereum introduced standardized methods for creating digital tokens, enabling

massive ecosystems of decentralized assets.

Main token standards (Table 5-5):

Table 5-5. Token Standards and Their Use Cases

Standard Description Use Cases

ERC-20 Fungible tokens (identical units) Stablecoins (USDC), utility tokens (LINK)

ERC-721 Non-fungible tokens (unique units) Art NFTs (CryptoPunks, BAYC)

ERC-1155 Hybrid tokens (both fungible and non-fungible) Gaming assets, virtual real estate

These standards act like “universal languages” for creating digital assets. Developers

can now avoid inventing new protocols for every token by following existing templates

like ERC-20 or ERC-721, which ensures compatibility across wallets, exchanges, and

DApps. This standardized approach not only accelerates innovation but also promotes

interoperability, one of the pillars of Web3. Without these standards, building a

tokenized economy would be chaotic and fragmented. Ethereum’s presence led to an

increase in creativity and commerce on the blockchain.

Real-world impact:

 – ERC-20 enabled the ICO boom in 2017.

 – ERC-721 fueled the NFT explosion from 2020 onward.

 – ERC-1155 allowed flexible asset creation for games and marketplaces.

This transformation cannot be overstated. By offering standardized, programmable

money and assets, Ethereum unlocked new digital markets that simply could not exist

CHAPTER 5 BLOCKCHAIN APPLICATIONS

201

before. From global fundraising through ICOs to the explosion of digital art, gaming

economies, and virtual real estate, Ethereum proved that decentralized ownership could

thrive at scale. The repercussions of this go beyond cryptocurrency. It has impacted the

way value is created, exchanged, and experienced online.

 Ethereum Ecosystem and Community

Ethereum is a technology company that thrives on decentralization, not only in code

but also in culture, unlike traditional tech companies with centralized leadership.

Conferences like Devcon, hackathons like ETHGlobal, and online communities like

Ethereum Magicians create an atmosphere where relentless innovation is encouraged.

Figure 5-14 maps out the global Ethereum developer network.

Vitalik Buterin may be Ethereum’s most famous voice, but the project’s strength

lies in its distributed collective: countless independent teams building, improving, and

challenging the status quo.

This community-driven approach ensures that Ethereum evolves organically, based

on the needs and dreams of its users rather than corporate mandates.

Figure 5-14. Ethereum Developer Tools

CHAPTER 5 BLOCKCHAIN APPLICATIONS

202

 DeFi on Ethereum

Ethereum holds the title as the home of Decentralized Finance (DeFi).

In DeFi, traditional financial services are reimagined as decentralized protocols

(Table 5-6):

Table 5-6. DeFi Services on Ethereum

Service DeFi Examples Description

Lending Aave, Compound Users earn interest or borrow against assets.

Trading Uniswap, SushiSwap Decentralized exchanges with automated liquidity.

Asset Management Yearn.Finance Automated yield optimization across protocols.

DeFi has created a parallel financial universe (Figure 5-15):

 – No banks.

 – No brokers.

In this new financial paradigm, users are no longer subject to arbitrary fees,

account closures, or exclusion based on geography. Financial sovereignty is restored:

a smartphone and an internet connection are all that’s needed to participate. Smart

contracts replace lawyers, escrow agents, and bankers, executing transactions

transparently and automatically.

DeFi isn’t just an alternative to traditional finance; it’s a complete reinvention,

offering efficiency, transparency, and accessibility that centralized systems struggle

to match.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

203

Figure 5-15. DeFi Ecosystem on Ethereum

 NFTs and the Creator Economy

Ethereum’s ERC-721 standard gave rise to the NFT revolution.

NFT Use Cases:

 – Digital art (Beeple’s $69M sale).

 – Virtual real estate (Decentraland, The Sandbox).

 – Music royalties and tickets.

 – In-game assets with real-world value.

NFTs empowered creators by allowing direct monetization without relying on

traditional gatekeepers like galleries, publishers, or labels. Figure 5-16 outlines real-

world use cases for NFTs on Ethereum.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

204

Figure 5-16. NFT Use Cases

 DAOs and Decentralized Governance

Decentralized Autonomous Organizations (DAOs) are a new way for communities to

govern themselves.

In a DAO:

 – Members hold governance tokens.

 – They propose and vote on decisions.

 – Code enforces outcomes automatically.

DAOs are emerging in every field: investment clubs, nonprofits, protocol

governance, and even journalism. Figure 5-17 visualizes how a DAO proposal and voting

mechanism work.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

205

Figure 5-17. DAO Governance Process

 Developer Ecosystem

Ethereum glories:

 – Thousands of active developers globally

 – Dozens of annual hackathons (e.g., ETHDenver and ETHCC)

 – Hundreds of open-source projects

The Ethereum developer ecosystem is often described as the largest and most active

in the blockchain world. This critical mass of talent drives constant innovation, from

Layer 2 scaling solutions to radical experiments in decentralized governance.

Open-source culture permeates the space, encouraging collaboration over

competition. Every breakthrough, whether it be on zero-knowledge proofs, rollup

technology, or user-friendly wallets, enhances the entire network. In many ways,

Ethereum is not a project led by a company but an idea being collaboratively built by

the world.

 Ethereum’s Future

Vitalik Buterin outlined Ethereum’s ambitious roadmap (Table 5-7):

Table 5-7. Ethereum Roadmap Phases

Phase Goal

Surge Massive scaling through rollups and sharding.

Verge Simplify storage with Verkle trees.

Purge Clean up protocol complexity and historical data.

Splurge Miscellaneous upgrades and improvements.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

206

The goal is not only technical but also philosophical. Ethereum refuses to

compromise on its founding values of openness, censorship resistance, and inclusivity,

even as it faces the immense pressures of mass adoption. Scaling to millions of users

means not just increasing raw throughput but doing so without creating new centralized

bottlenecks. It demands elegant cryptographic innovations, global collaboration, and

thoughtful governance. As Ethereum moves through each phase of its roadmap, it

strives to achieve what no platform has done before: a truly decentralized, scalable, and

resilient global infrastructure, capable of supporting finance, culture, governance, and

creativity for generations to come.

 Conclusion

Blockchain is no longer confined to the world of cryptocurrencies; it’s becoming the

foundational layer for a new internet: Web3. In this chapter, we explored how the

transition from Web2’s centralized platforms to Web3’s decentralized architectures

changes identity, ownership, and participation. From user-controlled wallets to

tokenized content, blockchain redefines how individuals interact online.

Choosing the right blockchain is not a purely technical decision; it’s a strategic

one. It’s important to strike a balance between scalability, security, decentralization,

and community support. Ethereum stands out as a versatile platform, not only for its

pioneering smart contracts but also for the thriving ecosystem it has enabled, from DeFi

and NFTs to DAOs and developer innovation.

As we move forward, understanding these building blocks equips us to design

applications that are more transparent, resilient, and user-empowered, core principles at

the heart of the blockchain revolution.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

207

 Chapter Summary

Topic Key takeaways

Web2 vs. Web3 Web2 is centralized and corporate-controlled; Web3 introduces decentralized

infrastructure and user ownership.

User

Experience

Web3 changes identity, payments, and content ownership, empowering users but

requiring greater responsibility.

Industry

Transitions

Case studies in social media, finance, and cloud storage demonstrate Web3’s

impact on traditional systems.

Blockchain

Selection

Key factors include scalability, decentralization, developer ecosystem, and

regulatory considerations.

Ethereum

Architecture

Ethereum introduced smart contracts, the EVM, PoS consensus, and token

standards for programmable assets.

DeFi, NFTs,

DAOs

Ethereum powers decentralized financial protocols, creator economies, and

community-led governance models.

Ecosystem and

Future

Ethereum’s large developer base and clear roadmap make it a cornerstone of

blockchain innovation.

CHAPTER 5 BLOCKCHAIN APPLICATIONS

209
© Soumaya Erradi 2025
S. Erradi, Web3 Development with Angular, https://doi.org/10.1007/979-8-8688-1886-8_6

CHAPTER 6

Wallet

Introduction

As blockchain technology reshapes finance, identity, and ownership, the concept of

a cryptocurrency wallet becomes central to interacting with this new decentralized

world. In traditional banking, an individual’s wealth is secured by trusted institutions. In

the blockchain universe, individuals assume direct control and responsibility for their

assets. Although this empowerment is revolutionary, it also presents new challenges,

particularly the need for impeccable security and technical understanding.

A cryptocurrency wallet is not just a place to store coins. It is your gateway to managing

digital assets, interacting with decentralized applications (DApps), signing transactions,

participating in decentralized finance (DeFi), voting in governance systems, and

safeguarding your digital identity. Proper wallet management is critical for both financial

sovereignty and personal security in Web3.

In this chapter, we will deeply explore what cryptocurrency wallets are, how they

function, the critical importance of mnemonic phrases, how public and private keys

interplay, the various types of wallets available, and best practices for setting up and

securing your digital life.

We will also highlight common mistakes, demystify technical terms, and prepare you

for safe and effective participation in the blockchain ecosystem.

Understanding Cryptocurrency Wallets

In the world of blockchain and digital assets, the term “cryptocurrency wallet” is

fundamental. Yet, for newcomers, the concept can often feel abstract or confusing.

Unlike a leather wallet in your pocket, a cryptocurrency wallet does not physically hold

coins or tokens. Instead, it acts as a secure portal, allowing you to access, manage, and

transact your digital wealth on decentralized networks.

https://doi.org/10.1007/979-8-8688-1886-8_6#DOI

210

Understanding how wallets function is crucial because, in a decentralized world,

there is no customer service hotline if you lose access. Ownership, security, and

autonomy all converge inside this simple but powerful tool. In this section, we will

explore what cryptocurrency wallets are, how they work, why they matter, and how they

fit into the larger blockchain ecosystem.

What Is a Cryptocurrency Wallet?

Definition

At its core, a cryptocurrency wallet is a software program, hardware device, or even a

paper artifact that stores private and public keys. These keys are essential to interact

with a blockchain, manage your digital assets, and authorize transactions.

The wallet allows users to:

• Send cryptocurrencies to other addresses

• Receive cryptocurrencies securely

• Store keys safely over long periods

• Sign and verify ownership of digital assets

The crucial point: The assets themselves always live on the blockchain. The wallet

merely manages your access to them.

Purpose

Cryptocurrency wallets fulfill several indispensable roles:

• Authentication: They verify that the person initiating a transaction is

authorized to do so.

• Authorization: Wallets sign transactions to be broadcast onto the

blockchain.

• Security: They protect your private keys from being exposed to

external threats.

CHAPTER 6 WALLET

211

• Identity: In Web3 applications, your wallet address often doubles as

your online identity.

• Accessibility: They make digital assets available for daily use, like

trading, staking, or interacting with decentralized applications

(DApps).

In short, a wallet is your personal “bank branch,” “passport,” and “keychain” to the

blockchain.

How Wallets Work

Understanding the mechanics of wallets requires grasping two fundamental concepts:

asymmetric cryptography and blockchain interaction.

Asymmetric Cryptography

Every wallet relies on a cryptographic system involving two keys (Figure 6-1):

• Private Key: A long, randomly generated string of characters that

must remain secret. Whoever possesses this key can fully control the

assets tied to it.

• Public Key: Derived mathematically from the private key. This is safe

to share and serves as your receiving address.

CHAPTER 6 WALLET

212

Figure 6-1. Cryptography in Wallets

When you create a wallet, the software generates these two keys. The private key

must be guarded at all costs because losing it means losing access to your funds forever.

Transaction Process

Here’s what happens during a cryptocurrency transaction:

 1. You enter the recipient’s address and the amount to send.

 2. Your wallet software signs this information with your private key.

 3. The signed transaction is broadcast to the blockchain network.

 4. Blockchain nodes validate the signature and record the

transaction.

CHAPTER 6 WALLET

213

Importantly, your private key is never transmitted during this process. Only the

signature, derived from your private key, is exposed.

Types of Wallets

While the basic principles remain constant, there are several types of wallets, each

catering to different needs. Hot and cold wallets are compared in Table 6-1.

 1. Hot Wallets

• Definition: Wallets connected to the internet.

• Examples: Browser wallets (MetaMask), mobile wallets (Trust

Wallet), and desktop wallets (Exodus).

• Pros: Easy access, user-friendly.

• Cons: Vulnerable to online attacks if not secured properly.

Hot wallets are excellent for daily transactions but should not be

used for long-term storage of large sums.

 2. Cold Wallets

• Definition: Wallets disconnected from the internet.

• Examples: Hardware wallets (Ledger and Trezor), paper wallets.

• Pros: Extremely secure against online threats.

• Cons: Less convenient for frequent transactions.

Cold wallets are considered the gold standard for storing significant amounts of

cryptocurrency.

CHAPTER 6 WALLET

214

Table 6-1. Comparison of Hot and Cold Wallets

Feature Hot Wallets Cold Wallets

Connectivity Connected to the internet (e.g., web/mobile

apps, browser extensions)

Completely offline (e.g., hardware

wallets, paper wallets)

Security More vulnerable to hacks, phishing, and

malware

Safer from online attacks, but physical

security is critical

Convenience Easy to access and use for frequent

transactions

Less convenient; ideal for long-term

storage or large amounts

Cost Usually free or low-cost May require purchasing hardware (e.g.,

Ledger, Trezor)

Use Case Daily spending, quick trades, DeFi

interaction

HODLing, savings, cold storage of large

funds

Recovery Often tied to cloud backups or seed phrases Seed phrase-based; physical loss could

mean loss of access

Examples MetaMask, Trust Wallet, Coinbase Wallet Ledger Nano S/X, Trezor, Paper Wallets

Custodial vs. Non-custodial Wallets

Another important distinction:

• Custodial Wallets: A third party (like an exchange) holds your

private keys.

• You trust the platform to secure your assets.

• Example: Coinbase wallet on the exchange platform.

• Non-custodial Wallets: Only you have access to the private keys.

• You are solely responsible for your security.

• Example: MetaMask, Trust Wallet.

CHAPTER 6 WALLET

215

“Not your keys, not your coins.” — A mantra in the crypto community emphasizing

the importance of non-custodial control.

Importance of Wallet Security

It is crucial to manage a cryptocurrency wallet responsibly. Great power comes with

great responsibility, which means you can’t call customer service for help.

Key security practices:

• Back up your recovery phrase (mnemonic phrase) securely.

• Use hardware wallets for significant funds.

• Enable two-factor authentication (2FA) whenever possible.

• Stay vigilant against phishing attacks.

• Never share your private key or recovery phrase.

Real-World cautionary tale:

In 2021, over $100 million worth of cryptocurrency was stolen from users who fell

victim to phishing scams impersonating popular wallet providers.

Common Misconceptions About Wallets

 1. “If I lose my wallet app, I lose my money.”

• False. If you have your backup recovery phrase, you can restore

your wallet on any compatible device.

 2. “Wallets store coins inside them.”

• False. Wallets store private keys. Coins remain on the blockchain.

 3. “All wallets are equally safe.”

• False. Poorly secured hot wallets are vastly riskier than hardware

wallets.

CHAPTER 6 WALLET

216

Real-World Examples

• Metamask: A popular non-custodial browser extension wallet for

Ethereum and EVM-compatible blockchains.

• Ledger Nano X: A cold storage hardware wallet highly regarded for

security.

• Trust Wallet: A mobile wallet supporting a wide variety of assets.

• Trezor Model T: Another top-tier hardware wallet.

These examples show the diversity of choices available depending on whether a user

prioritizes convenience or security.

Cryptocurrency wallets are much more than simple storage devices. They embody

the very philosophy of decentralization: empowering individuals with direct control over

their assets and identity.

Choosing the right wallet, understanding how it works, and practicing good security

habits are critical steps for anyone engaging with blockchain technology. In a world

without intermediaries, your wallet is your fortress, your passport, and your bank vault,

all rolled into one.

Mnemonic Phrases and Their Importance

Security is essential in the world of cryptocurrency. Unlike traditional banking systems,

where passwords can be reset and accounts can often be recovered through customer

support, the decentralized nature of blockchain technology places full responsibility on

the user. One of the most critical elements in securing a cryptocurrency wallet, and by

extension, the digital assets it holds, is the mnemonic phrase.

What Is a Mnemonic Phrase?

Creating a new cryptocurrency wallet generates a mnemonic phrase, which is a

sequence of typically 12, 18, or 24 words. These words may seem random, but together,

they encode all the cryptographic information necessary to regenerate your wallet’s

private keys and addresses. This system is based on the BIP-39 standard, which

ensures that every word belongs to a pre-approved list of easy-to-write, hard-to-confuse

English words.

CHAPTER 6 WALLET

217

Your mnemonic phrase is essentially your master key. It allows you to:

• Restore your wallet on any compatible device.

• Access all your funds and transaction history.

• Maintain full ownership, independent of any company, device,

or nation.

Your crypto assets cannot be recovered without your mnemonic phrase, and there

is no way to recover them through password reset, customer support ticket, or phone

call. This concept can be shocking to those used to centralized systems, where assistance

is always just a phone call away. In blockchain, finality is absolute: the ledger does not

lie, and no entity has the power to reverse it. The harsh reality isn’t a weakness; it’s a

characteristic, and it’s a result of removing intermediaries and providing users with

complete control. The upside is liberation from third-party risks; the downside is that

the safety net is removed. You are the first and last line of defense. The role of mnemonic

phrases is depicted in Figure 6-2.

Figure 6-2. Wallet flow

CHAPTER 6 WALLET

218

Why Is It Important?

The mnemonic phrase is the sole method of recovery, not just a convenient option.

Losing it means losing everything. This isn’t an exaggeration; it’s the fundamental rule

of self-custody in Web3. Unlike traditional systems, there’s no “forgot password” button

and no customer support line to call. Security in this world must be proactive, not

reactive.

This shift comes with a trade-off: radical empowerment in exchange for radical

responsibility. You control your assets fully. But that also means you alone are

responsible for securing them. A single point of failure, like exposing your mnemonic

phrase, can result in total, irreversible loss.

Here’s why your mnemonic phrase is so critical:

• Backup and Recovery: Devices fail. Phones get lost. Your mnemonic

ensures your crypto assets aren’t tethered to a single piece of

hardware.

• Portability: Travel anywhere or switch devices; your assets follow

with just 12 or 24 words.

• Complete Ownership: No government, company, or third party can

access or confiscate your funds, unless you give them access.

This level of sovereignty is powerful, but it requires a new mindset. Think of your

mnemonic phrase like physical gold or bearer bonds: valuable, irreplaceable, and

vulnerable if left unsecured.

Many early users learned this the hard way. In the Web3 world, personal vigilance is

the price of financial freedom. For those prepared, this autonomy is liberating. For the

careless, it can be catastrophic.

Best Practices for Mnemonic Phrase Security

Your mnemonic phrase is more than just a password; it’s the key to a vault that may hold

life-changing sums of money, irreplaceable data, or personal identity proofs. Think of it

as both the map and the combination to that vault. A failure at either level, losing it, or

letting it fall into the wrong hands can result in irreversible loss.

CHAPTER 6 WALLET

219

Securing your mnemonic isn’t a one-time task. It’s an active, ongoing responsibility

that should become part of your broader digital hygiene, just like renewing your

insurance, backing up your files, or testing your smoke detectors.

Figure 6-3 shows recommended practices for securing your mnemonic phrase.

This phrase deserves physical, digital, and procedural protection:

• Store it offline in a secure, fireproof location.

• Avoid photographing or typing it into internet-connected devices.

• Share it with no one, ever.

Your mnemonic is the backbone of your financial sovereignty. Treat it with the

seriousness it demands.

Table 6-2 summarizes best practices.

Table 6-2. Best Practices for Mnemonic Phrase Security

Best Practice Description

Write it down securely Create multiple physical copies, avoid digital storage

Store in safe locations Use safes, separate storage sites

Never share your phrase Guard it like you would a treasure, assume any request is a

scam

Consider sharding your backup Split into parts stored separately

Regularly verify your backup Check backups periodically to ensure readability and existence

Now, let’s break down each best practice carefully. Table 6-2 summarizes best

practices for securing mnemonic phrases.

 1. Write It Down Securely

At first, this might seem old-fashioned. In a world dominated

by cloud storage, physical notes feel obsolete. However, storing

your mnemonic phrase digitally exposes it to a vast array of

online risks: malware, hackers, cloud breaches, phishing links, or

device theft.

Instead:

• Write it legibly, using archival-quality pens and paper.

CHAPTER 6 WALLET

220

• Make at least two physical copies.

• Double-check each word; even one mistake can render the

entire backup useless.

Some users go even further:

• Metal Wallets: Specialized steel sheets designed to survive fire,

flood, and physical damage.

A properly written and preserved backup ensures that even in

catastrophic scenarios, such as floods, fires, and thefts, your ability

to recover your assets remains intact.

 2. Store in Safe Locations

One backup isn’t enough. Two might not be either. In the world of

irreversible crypto loss, redundancy is non-negotiable.

Store multiple copies of your mnemonic phrase in physically

separated, secure locations. A house fire, flood, or break-in

should never be able to wipe out your entire recovery plan.

If any backup is stored in a less secure environment, consider

encrypting it. However, make sure the decryption method is well-

documented and accessible to you when needed.

Also consider geopolitical risk: in regions facing instability, it may

be wise to store at least one copy in another country, providing

protection from localized threats like political unrest or asset

seizure.

The goal is balance: maximum security without compromising

recoverability. It’s dangerous to have too little redundancy, but so

is complexity without clarity.

 3. Never Share Your Phrase

Your mnemonic phrase is never meant to be shared. No legitimate

service, including a wallet, exchange, or dApp, will ever require it.

Not for support. Not for upgrades. Not for verification. Never.

If someone asks for your seed phrase, they’re trying to steal your

assets. No exceptions.

CHAPTER 6 WALLET

221

Scammers often seem professional and convincing. Some pretend

to be support agents. Others send emails, Discord messages, or

popups mimicking trusted services. But they almost always want

one thing: your seed phrase, the ultimate access key.

Treat it like a sacred secret. And if you help others onboard into

crypto, teach them this rule. Most social engineering scams

succeed not through technology, but through ignorance.

Remember:

• Emails, Discord messages, SMS, “support agents,” or popup ads

that request it are all scams.

 4. Consider Sharding Your Backup

For those seeking a higher level of protection, sharding your

mnemonic phrase is a powerful strategy. This means splitting

your seed into multiple parts, each stored in a different secure

location.

Examples:

• Divide a 24-word phrase into two 12-word halves, each stored in

separate cities.

• Use Shamir’s Secret Sharing to mathematically split the phrase

into multiple shares, requiring a specific threshold (e.g., 2 out of

3) to reconstruct it.

Benefits of Sharding:

• A single compromised shard is useless on its own.

• Attackers would need to locate multiple secured locations to

access your full wallet.

• Even natural disasters or thefts affecting one site won’t

compromise your assets.

Think of it like placing valuables in two locked safes in

different buildings: breaking into one gives nothing. The more

independent security hurdles you introduce, the harder it

becomes for anyone, including you, to make a costly mistake.

CHAPTER 6 WALLET

222

Important If you use sharding, ensure that your reconstruction plan is clear,

secure, and accessible, especially in an emergency.

 5. Regularly Verify Tour Backup

Creating a secure backup is essential, but keeping it intact over

time is just as important. Physical degradation happens faster

than most people expect. Paper can yellow, ink can fade, metal

can corrode, and even bank vaults aren’t immune to floods, fire, or

humidity.

Just like reviewing your insurance or updating your will, check

your wallet backups regularly, ideally once or twice a year.

What can go wrong:

• Ink fades

• Paper becomes brittle

• Metal plates corrode in coastal or humid climates

• Safe combinations are lost or forgotten

What to do:

• Inspect backups for readability and physical condition

• Restore a wallet from your backup (on a secure, offline device) to

ensure it still works

• Replace or rotate materials that show signs of wear

CHAPTER 6 WALLET

223

Figure 6-3. Mnemonic Phrase Security Best Practices

Real-World Lessons: Horror Stories

The importance of securing a mnemonic phrase is often driven home by cautionary tales

from the crypto community:

• The Lost Drive: A user accidentally threw away a hard drive

containing the only copy of his Bitcoin wallet’s mnemonic phrase, an

estimated $300 million in lost Bitcoin.

• The Phishing Scam: Another user fell for a fake “wallet update”

email, entering their mnemonic phrase into a fraudulent website.

Within minutes, their wallet was drained.

These stories underline a grim but vital truth:

Responsibility in Web3 is binary; you either have complete

control or none at all.

There’s no such thing as partial loss in crypto. You either retain full access to your

cryptographic keys, or you lose everything.

CHAPTER 6 WALLET

224

Blockchain systems don’t recognize human error, forgotten passwords, or

customer support tickets. Their strength lies in this rigidity: decentralized networks

operate under strict, incorruptible logic. There are no exceptions. No appeals. No

authorities.

This can feel unforgiving, and it is. But it’s also what makes Web3 systems resilient,

neutral, and tamper-proof.

Ownership in crypto is binary:

• You have your keys → You have control.

• You lose them → You lose everything.

That’s why securing your mnemonic phrase isn’t a helpful tip; it’s a survival skill in

the decentralized world.

Advanced Security Techniques

As the crypto space matures, so do the tactics used to exploit it. What once passed for

“good enough” security is now insufficient, especially for users managing significant

funds or digital assets.

For those looking to move beyond the basics, a range of advanced security strategies

offer deeper protection:

• Multisignature wallets for shared or distributed authorization

• Hardware-based cold storage to keep keys offline

• Decoy wallets (plausible deniability setups)

• Sharded backups stored across multiple geographic locations

These techniques represent the new gold standard for serious participants in

the space.

But they come with a trade-off: greater complexity can introduce new risks,

especially if procedures aren’t clearly documented or regularly maintained. The key is

finding the right balance between security and usability.

CHAPTER 6 WALLET

225

Encrypting Your Mnemonic

• Use passphrases (BIP-39 extensions) to add another layer to your

recovery phrase.

• This is like setting an extra password that must be entered alongside

the mnemonic to regenerate your wallet.

• Without the correct passphrase, the mnemonic phrase alone is

useless.

Multi-signature Wallets

• Instead of a single key controlling the wallet, multiple keys are

required to authorize a transaction.

• This is excellent for organizational setups (e.g., treasury

management) or added redundancy for individuals.

• For example, you could require 2 out of 3 signatures to move funds,

protecting against single-point failure.

Hidden Wallets

• Some users create hidden wallets layered within their main wallet,

unlocked only with a specific password.

• This method provides a “decoy” wallet (containing small amounts)

and a “hidden” wallet with the main holdings.

• In the event of coercion, a user could reveal the decoy wallet while

keeping their true holdings safe.

• Wallets like BitBox and Ledger support such advanced setups.

Cold Storage Solutions

• For long-term holdings, storing mnemonic phrases and wallets

completely offline (cold storage) is the gold standard.

CHAPTER 6 WALLET

226

• This could involve air-gapped computers or specialized hardware

designed never to connect to the internet.

• Devices like Coldcard, Keystone, and custom-built air-gapped

systems are popular choices.

Mnemonic phrases are the foundation of self-custody in the crypto world. They

empower users with full ownership and access to their digital assets, but with great

power comes great responsibility. Protecting your mnemonic phrase means protecting

your financial freedom, your identity, and your place in the new digital economy.

Keys: Public and Private

At the heart of blockchain technology, beneath the layers of smart contracts, tokens,

and decentralized applications, lies a critical and elegant system: public and private key

cryptography. Without it, blockchain would simply not be possible. Every transaction,

every ownership proof, and every digital signature relies on the unbreakable bond

between a public key and a private key.

Understanding this pairing is essential for anyone wishing to interact securely and

confidently in the blockchain world. Just as mnemonic phrases act as the ultimate

recovery tool, public and private keys act as the mechanism of daily operation: they

authenticate transactions, prove ownership, and protect your assets.

Definition and Differences

What Is a Private Key?

A private key is an ultra-sensitive, randomly generated alphanumeric code. It acts as

a master password, not to a website or service, but to your actual wealth, identity, and

digital existence on the blockchain.

Think of your private key as the equivalent of:

• The only key to a high-security vault.

• The only password to your sovereign digital identity.

• The only signature needed to validate powerful financial

transactions.

CHAPTER 6 WALLET

227

Properties of a Private Key:

• It must remain secret and protected at all costs.

• It can generate (but not be reverse-engineered from) a corresponding

public key.

• It is used to sign transactions, proving ownership and authorization.

The strength of a private key lies in mathematics: the probability of guessing a valid

private key is so astronomically low (about 1 in 2128) that it’s effectively impossible, even

with the combined computing power of the universe.

Technical Details:

• Format: 256-bit number (typically shown as 64 hexadecimal

characters).

• Example (truncated):

0x1f5b1a8e9c46c3eabfe12c0b7db5b0e6c8af8283c35c5f7d96f6b0d9c5

de7c4a

In simpler terms, your private key is your power of attorney over your digital assets.

Lose it, and you lose everything. Expose it, and you invite irreversible theft.

What Is a Public Key?

The public key is generated directly from the private key through a one-way

cryptographic function. While private keys must remain secret, public keys are designed

to be shared freely.

Properties of a Public Key:

• It allows others to verify your signatures.

• It enables others to send you cryptocurrency or messages.

• It poses no danger if publicly exposed (as long as the private key

remains secret).

The public key is like your public-facing address: people can know it, use it to

interact with you, and trust it for communication or transactions, but they cannot use it

to take anything away from you.

CHAPTER 6 WALLET

228

Technical Details:

• Format: Depending on the blockchain, public keys can be

compressed or uncompressed.

• In Ethereum, public keys are often hashed further to generate shorter

wallet addresses (40 hexadecimal characters prefixed by 0x).

Example Ethereum Address: 0x742d35Cc6634C0532925a3b844Bc454e4438f44e

Key Differences: Private vs. Public

While both private and public keys are fundamental to blockchain security, they

serve distinct purposes. Table 6-3 summarizes the main differences between the two,

highlighting their visibility, role in transactions, and importance in maintaining asset

security. The differences between private and public keys are also outlined.

Table 6-3. Private Key vs. Public Key Differences

Feature Private Key Public Key

Visibility Kept secret Shared openly

Purpose Authorizes transactions Verifies transactions, receives funds

Criticality Loss means total loss of assets Loss can be recovered if private key is safe

Mathematical Relation Basis for generating public key Derived from private key

Role in Signature Signs transactions Verifies signatures

Why Is This System Brilliant?

This asymmetry, where one key can sign and another can verify, underpins the trustless

security model of blockchains.

In traditional finance:

• Trust is placed in banks, auditors, and governments.

In blockchain:

• Trust is placed in math and open code.

CHAPTER 6 WALLET

229

• Transactions don’t require approval from third parties; they require

cryptographic proof.

Public and private keys make it possible to:

• Move money across the world without banks.

• Own property without relying on governments.

• Vote in decentralized organizations without fear of fraud.

• Authenticate identities without passwords or centralized databases.

They are the glue holding decentralized systems together.

Importance of Key Management

In traditional banking, losing access to your account might be an inconvenience, but a

few forms and phone calls can recover your funds. In blockchain, key management is

absolute: if you lose your private key, you lose access permanently. If your private key is

stolen, your assets can be drained immediately and irreversibly.

This brutal finality underscores why managing your private key responsibly is one of

the most critical skills in Web3.

Key management involves:

• Secure Generation: Always create wallets and keys through

reputable, audited software. Never accept keys generated by online

forms or third parties.

• Safe Storage: Private keys should never be stored in plain text, in

email inboxes, on cloud services, or unencrypted on devices.

• Access Control: Only the wallet owner should have access to the

private key. Never share it, not even with support teams or trusted

individuals.

• Backup Strategies: Keys should be backed up securely, ideally

offline, across multiple locations and, if possible, using advanced

techniques like sharding or encryption.

CHAPTER 6 WALLET

230

• Lifecycle Management: If you suspect your key may have been

exposed, migrate your funds immediately to a new wallet with freshly

generated keys.

Common Key Management Strategies

Managing private keys effectively is essential for maintaining security and avoiding

irreversible loss of funds. Different approaches offer varying levels of safety and

convenience. Table 6-4 outlines common strategies for key management, their

descriptions, and associated risk levels and also highlights common key management

strategies with their risk levels.

Table 6-4. Key Management Strategies and Risks

Strategy Description Risk level

Memorizing keys Remembering the private key manually. Extremely risky (forgetfulness,

mental error).

Writing keys on

paper

Physical backup written on paper. Risk of fire, theft, and fading.

Hardware wallet

storage

Using devices like Ledger or Trezor. Low (if the device is secured

properly).

Air-gapped cold

storage

Keeping keys entirely offline. Very low, but complex setup.

Multi-signature

solutions

Requiring multiple keys to approve a

transaction.

Very low if configured properly.

Real-World Key Management Failures

The crypto world is filled with cautionary tales that illustrate the life-or-death

importance of key management.

CHAPTER 6 WALLET

231

• Mt. Gox Bankruptcy (2014):

Though primarily a case of theft, many Mt. Gox users lacked personal

wallet control, relying on the exchange to hold their private keys, and

paid the ultimate price when the exchange collapsed.

• Hard Drive Losses:

Countless users have lost fortunes by losing hardware wallets,

misplacing computers, or failing to back up their keys. The famous

case of James Howells, who lost 8,000 Bitcoin in a landfill, stands as a

stark warning.

• SIM-Swapping Attacks:

Hackers hijack phone numbers to access email and cloud backups,

but if private keys are securely offline, such attacks are useless.

Otherwise, they can lead to devastating thefts.

These stories reinforce a simple truth: security practices must be airtight from

day one.

Advanced Key Management Strategies

For users securing significant assets or managing organizational wallets, additional

techniques can offer enhanced security:

Multi-signature Wallets

• Require multiple private keys to authorize transactions.

• Example: “2 out of 3” wallets require 2 signatures out of 3 possible key

holders.

• Adds redundancy and protection against single points of failure.

Hardware Wallets

• Devices like Ledger, Trezor, and Coldcard store private keys in secure

environments isolated from the internet.

• Protects against malware, phishing, and most common attacks.

CHAPTER 6 WALLET

232

Air-Gapped Devices

• Wallets created and operated entirely offline.

• Private keys never touch internet-connected devices, drastically

reducing the attack surface.

Hierarchical Deterministic (HD) Wallets

• HD wallets derive multiple addresses from a single master seed.

• Allow structured backups and easier management of multiple

addresses without exposing the underlying private keys individually.

Owning cryptocurrency isn’t just about holding digital coins — it’s about

assuming full custody of powerful cryptographic keys that secure your place in the

decentralized world.

In Web3:

• You are your keys.

• You are your wallet.

• You are your own bank.

This is both the great promise and great peril of blockchain: ultimate freedom paired

with ultimate responsibility.

Managing your keys properly is not optional — it is the price of admission into the

world of true financial sovereignty.

Wallet Setup Process

Setting up a cryptocurrency wallet is the very first act of sovereignty in the blockchain

world. The moment you leave centralized custodianship, which is the domain of banks,

brokers, and tech giants, and enter personal financial freedom.

Yet, with freedom comes complexity and responsibility. Wallet setup is not a

trivial process like signing up for an email account. Done improperly, it can expose

you to irreversible loss, theft, or frustration. Done correctly, it builds a strong, private

foundation for everything you will do in Web3.

CHAPTER 6 WALLET

233

In this section, we walk through the wallet creation process meticulously,

highlighting not only what to do but also why it matters. We’ll also explore the common

traps that newcomers fall into and how to avoid them, ensuring you move into the world

of decentralized ownership fully prepared.

Step-by-Step Guide to Setting Up a Wallet

Whether you are setting up a mobile wallet, a browser extension wallet, or a hardware

wallet, the general principles remain the same. Let’s break it down:

Step 1: Choose Your Wallet Type

Before setting anything up, you must first decide what kind of wallet suits your needs.

Table 6-5. Comparison of Wallet Types (Hardware, Software, and Paper)

Wallet Type Description Ideal for

Software

wallet

Apps or browser extensions like MetaMask,

Trust Wallet.

Beginners, light everyday use.

Hardware

wallet

Physical devices like Ledger, Trezor. Long-term storage, larger

amounts.

Paper wallet Mnemonic, or private key, is printed/stored

offline.

Cold storage with high manual

control.

Custodial

wallet

Managed by third parties (exchanges). High convenience but no true

ownership.

Important Decision: Choosing between convenience and control. Self-custody

(software or hardware wallets) offers full control but requires vigilance. Custodial wallets

sacrifice control for ease, at the cost of true sovereignty.

Step 2: Install and Verify the Wallet Software/Device

• Software Wallets:

• Download from the official website or app store.

• Verify authenticity by checking for official reviews, website

HTTPS certificates, and published checksums.

CHAPTER 6 WALLET

234

• Hardware Wallets:

• Order directly from the manufacturer or trusted vendors.

• Always check packaging for tampering.

• Perform firmware updates directly from official sources.

Why This Matters: Fake wallets and tampered devices are a favorite tool of hackers.

Installing from unofficial sources can silently expose your private keys during setup.

Real-World Example: In 2021, Ledger users reported phishing scams where

attackers sent fake replacement devices claiming they needed an urgent update, stealing

private keys from unsuspecting users.

Step 3: Create a New Wallet

Upon first opening the wallet software or device, you’ll be prompted to:

• Create a new wallet or

• Import an existing wallet (using mnemonic phrase)

Choose Create New Wallet if starting fresh.

At this stage:

• The system generates your private key and public key internally.

• The mnemonic phrase will be shown. Usually 12, 18, or 24 words.

You are now entering the most critical moment of the process.

Step 4: Back Up Your Mnemonic Phrase

The wallet will display the mnemonic phrase once, usually with strong warnings to

write it down.

DO NOT:

• Screenshot it.

• Save it in cloud storage.

• Email it to yourself.

• Copy it to the clipboard without care.

CHAPTER 6 WALLET

235

INSTEAD:

• Write it down carefully on paper.

• Verify spelling and word order.

• Create multiple backups if possible.

Key Insight: You are now the sole guardian of your assets. This is your bank, your

vault, and your passport to Web3.

Step 5: Confirm Your Mnemonic Phrase

Most wallets will test you immediately:

• Asking you to re-enter some or all the words in the correct order.

• This ensures you have backed up the phrase accurately.

Take this seriously: This step is not a formality. It catches errors now, when they can

be fixed, rather than later, when they could cause irreversible loss.

Step 6: Set a Strong Password (If Available)

Many software wallets add an additional layer of password protection for

daily access:

• Encrypts access to the local app or device.

• Adds protection against unauthorized access if your device is stolen.

Password Best Practices:

• Use long, random, complex passwords.

• Store passwords separately from the device (password manager or

physical storage).

• Avoid using the same password as other services.

Example of a Strong Password: F3!rS4nm8#Aq9zT!Yx7vBqW@p

Note This password protects the interface, not the blockchain access itself. If

someone has your mnemonic, your password won't matter. But a password buys

valuable time and complexity.

CHAPTER 6 WALLET

236

Step 7: Customize Wallet Settings

Once inside your new wallet:

• Set network preferences (e.g., Ethereum mainnet, testnets, and

Binance Smart Chain).

• Enable security settings like biometric locks (Face ID and

fingerprint).

• Label accounts for easier tracking.

• Create multiple accounts if planning to use wallets for different

purposes (investment, trading, and saving).

Important Tip Separate operational wallets (for frequent use) from cold storage

wallets (for long-term holdings).

Step 8: Test with a Small Transaction

Before depositing large sums:

• Send a small amount of cryptocurrency (like $5 worth) to your new

address.

• Confirm it arrives.

• Try sending it back to a known account.

This real-world testing verifies:

• The wallet is functional.

• The mnemonic works.

• You understand how to send and receive securely.

Remember: The best time to discover problems is before real money is at risk.

CHAPTER 6 WALLET

237

Common Pitfalls and Solutions

 1. Rushing the Setup

Mistake: Clicking “next” blindly during wallet setup, skipping

mnemonic backup or security warnings.

Consequence: Losing access if the device crashes, the app

uninstalls, or data is wiped.

Solution: Slow down. Treat wallet setup like setting up a secure

vault, not installing a game.

 2. Saving the Mnemonic Digitally

Mistake: Saving the recovery phrase in cloud storage, email drafts,

or even text messages.

Consequence: Hackers target online repositories and phishing

links to harvest these keys.

Solution: Only store backups offline: paper, metal plates, and

secure offline devices.

 3. Underestimating Physical Risks

Mistake: Keeping the only written backup in one house

vulnerable to fire, flood, or theft.

Consequence: Total asset loss if disaster strikes.

Solution: Distribute backups across different secure physical

locations.

 4. Falling for Fake Wallets

Mistake: Downloading wallets from unofficial sources or random

app stores.

Consequence: Phishing or malware that steals your private key

during setup.

Solution: Always verify the source. Bookmark official websites.

Use wallet apps vetted by the community.

CHAPTER 6 WALLET

238

 5. Losing Passwords

Mistake: Using weak passwords or forgetting the password that

locks your wallet interface.

Consequence: Exposure to physical theft or frustration in

accessing assets.

Solution: Use strong, unique passwords. Store them securely

using trusted methods.

Setting up a wallet is an act of self-empowerment. Just like using

any powerful tool, from fire to encryption, it requires respect.

Your entire crypto journey is shaped by the small choices made during setup, such

as where you write your mnemonic, how you secure backups, and how you test your

transactions.

In blockchain, mistakes are final. But so are victories. Once properly configured, your

wallet becomes your passport to a new digital frontier: a realm where you, and only you,

control your wealth, identity, and destiny.

In Web3, you don’t create an account. You create your own sovereign presence.

Types of Wallets

Cryptocurrency wallets come in many forms, each offering different balances between

security, accessibility, and user experience.

Choosing the right wallet type is like choosing the right kind of safe:

• A desktop wallet is like a lockbox in your home, convenient but

exposed.

• A hardware wallet is like a fortified vault, highly secure but slightly

less accessible.

• The ultimate offline security is achieved by burying a paper wallet,

but it is vulnerable to physical degradation.

Understanding the types of wallets available and when and why to use them is

fundamental to mastering personal crypto security.

CHAPTER 6 WALLET

239

Hardware Wallets

What Is a Hardware Wallet?

A hardware wallet is a physical device designed to securely store your private keys

offline. Rather than exposing keys to potentially infected computers or mobile devices,

hardware wallets isolate cryptographic operations within a tamper-proof chip.

Think of it as a vault in your pocket: Even if your laptop is hacked, your crypto

remains safe because your private key never leaves the hardware device.

Popular Examples:

• Ledger Nano S, Ledger Nano X

• Trezor Model T, Trezor One

• BitBox02

• Keystone Pro

How Hardware Wallets Work

When you initiate a transaction (e.g., sending Ethereum), the steps are:

 1. The transaction details are sent to the hardware wallet.

 2. Inside the device, the transaction is signed using your private key.

 3. The signed transaction (but not your private key) is sent back to

your computer or phone and broadcasted to the blockchain.

Important Insight: The private key never touches the internet, even for a second.

Advantages of Hardware Wallets

Hardware wallets offer several benefits that make them the preferred choice for securely

storing cryptocurrencies, particularly for long-term holdings or large balances. Table 6-6

summarizes their main advantages:

CHAPTER 6 WALLET

240

Table 6-6. Advantages of Hardware Wallets

Advantage Description

Maximum Security Offline storage shields keys from online threats like phishing, malware, and

viruses.

Resistance to

Tampering

Most devices are physically hardened and encrypted.

Multi-currency Support Manage Bitcoin, Ethereum, NFTs, and thousands of tokens in one device.

Recovery Flexibility Restore your wallet using your mnemonic phrase if the device is lost or

damaged.

Disadvantages of Hardware Wallets

Despite their strong security, hardware wallets also present some drawbacks that may

affect usability or cost. Table 6-7 highlights these disadvantages:

Table 6-7. Disadvantages of Hardware Wallets

Disadvantage Description

Cost Typically, between $50 and $250.

Setup

Complexity

More steps and security measures compared to simple apps.

Accessibility Requires carrying or accessing the device for every transaction.

Physical Risk Device loss, theft, or damage still requires proper backup planning.

When to Use a Hardware Wallet

• Holding significant sums (> $1,000) for the medium or long term.

• Active DeFi users managing multiple protocols.

• NFT collectors wanting to protect valuable digital art.

• Builders and developers working in Web3 ecosystems.

CHAPTER 6 WALLET

241

Real-World Example

During the massive DeFi boom of 2021, multiple users with browser extension wallets

(like MetaMask) fell victim to phishing attacks. However, users who linked their

MetaMask to a hardware wallet avoided total loss because transactions could not be

signed without physical confirmation on the device itself.

Key Takeaway: Even if your hot wallet (online wallet) is compromised, a hardware

wallet acts as a final line of defense.

Software Wallets

What Is a Software Wallet?

A software wallet is a program or application that stores your private keys on your

computer or mobile device. They are the most common form of wallet, offering ease of

use and instant access to crypto assets.

Popular Examples:

• MetaMask (browser extension and mobile app)

• Trust Wallet (mobile)

• Exodus (desktop and mobile)

• Rainbow Wallet (Ethereum-focused)

How Software Wallets Work

Unlike hardware wallets, software wallets keep the private keys within the device

memory or encrypted local storage.

When you send a transaction:

 1. The wallet software signs the transaction directly on your device.

 2. The signed transaction is broadcast to the blockchain.

Because your device is connected to the internet, this makes software wallets

convenient but inherently more vulnerable.

CHAPTER 6 WALLET

242

Advantages of Software Wallets

Software wallets are popular due to their accessibility and flexibility. They enable users

to quickly interact with decentralized applications and manage multiple assets at no

cost. Table 6-8 outlines their primary advantages:

Table 6-8. Advantages of Software Wallets

Advantage Description

Convenience Quick access for frequent trading, NFT minting, and dApp interactions.

Free to use Most wallets are open-source and cost nothing to install.

Multi-chain capabilities Manage assets across different blockchains easily.

Integrated dApp

browsers

Many wallets allow direct interaction with decentralized apps inside the

wallet.

Disadvantages of Software Wallets

While convenient, software wallets introduce certain risks, especially since they operate

on internet-connected devices. Table 6-9 summarizes the main disadvantages:

Table 6-9. Disadvantages of Software Wallets

Disadvantage Description

Exposure to

malware

Private keys reside on devices connected to the internet.

Social engineering

risks

Phishing links, fake wallets, and impersonation attacks.

Device loss or failure If backups aren't properly made, wallet access can be lost.

Permission

complexity

Authorizing smart contract interactions can expose tokens if users approve

malicious contracts unknowingly.

CHAPTER 6 WALLET

243

When to Use a Software Wallet

• Frequent traders who need fast transaction access

• New users exploring DeFi, NFTs, or staking

• Daily interactions with decentralized apps (dApps)

Pro Tip If using a software wallet, pair it with a hardware wallet whenever

possible for signing critical transactions.

Real-World Example

Many early adopters of NFTs during the 2021 bull run minted new tokens directly

through MetaMask connected to OpenSea. While highly convenient, this led to frequent

phishing scams; fake mint sites tricked users into granting approvals to malicious

contracts.

Lesson: Software wallets demand constant vigilance in checking what permissions

are being granted.

Paper Wallets

What Is a Paper Wallet?

A paper wallet is a physical printout of a private key and public address. It is one of the

oldest forms of “cold storage,” a way to keep crypto assets completely offline.

At its core, a paper wallet is nothing more than a piece of paper containing:

• Your public address (to receive funds)

• Your private key (to access and spend funds)

CHAPTER 6 WALLET

244

How Paper Wallets Work

After generating a paper wallet (typically offline):

• You can send funds to the public address.

• To spend or move the funds, you must import the private key into a

software wallet and sign transactions from there.

Advantages of Paper Wallets

Paper wallets provide one of the simplest and most secure ways to store cryptocurrency

completely offline. Table 6-10 summarizes their main advantages:

Table 6-10. Advantages of Paper Wallets

Advantage Description

Total offline

storage

Immune to online hacks, malware, or phishing.

Cost-free Requires no special device or software beyond generation tools.

Simplicity No software updates or device maintenance needed.

Disadvantages of Paper Wallets

Despite their offline security, paper wallets come with significant risks and limitations.

Table 6-11 highlights these disadvantages:

Table 6-11. Disadvantages of Paper Wallets

Disadvantage Description

Fragility Paper can tear, burn, fade, or be stolen easily.

Complexity of

spending

Must be imported into a hot wallet to spend, reintroducing online exposure.

Risk of theft If anyone finds the paper, they can access your funds without additional security.

Generation risks Must be created offline; online generation can expose private keys to malware.

CHAPTER 6 WALLET

245

When to Use a Paper Wallet

• Long-term holding of small to moderate crypto balances.

• Gifting cryptocurrency securely.

• Archival storage where digital systems are undesirable.

Important Caution If you use paper wallets, generate them completely offline,

preferably using an air-gapped computer running a secure, open-source generator.

Real-World Example

Bitcoin “gift cards” using paper wallet formats were popular in the early days of Bitcoin

(2011–2015). However, improperly generated wallets, using online services, led to major

thefts once users realized their private keys had been compromised.

Lesson: Paper wallets offer ultimate offline protection only if properly generated and

stored securely.

Comparing Wallet Types

Choosing the right wallet type requires balancing security, convenience, and intended

use. Table 6-12 compares the main characteristics of hardware, software, and paper

wallets:

CHAPTER 6 WALLET

246

Table 6-12. Comparison of Wallet Types (Hardware, Software, and Paper)

Feature Hardware Wallet Software Wallet Paper Wallet

Security Highest (offline keys) Moderate (online keys) Highest (offline, if generated

securely)

Cost $50–$250 Free Free (except printing costs)

Accessibility Medium High Low

Risk Physical loss/theft Malware, phishing Physical degradation/theft

Best use Large, long-term

holdings

Daily interactions, frequent

trading

Cold storage, gifts

Choosing the right type of wallet is personal. It depends on your financial goals,

technical comfort level, risk tolerance, and intended use cases.

If you're investing serious capital, a hardware wallet is not optional; it’s essential.

If you're learning and experimenting, start with a software wallet, but secure your

mnemonic carefully. If you're building cold storage for future generations, consider

secure paper wallets or advanced multi-signature setups.

Conclusion

Cryptocurrency wallets are the cornerstone of digital asset ownership in the blockchain

era. Unlike traditional banking, where third parties safeguard your funds, wallets place

full control and responsibility into your hands. From managing public and private

keys to securing mnemonic phrases and choosing the right wallet type, each decision

determines the safety and accessibility of your assets.

Mastering wallets is not just about storing coins; it’s about understanding

sovereignty in Web3. With proper setup, vigilant security practices, and thoughtful use

of tools like hardware wallets or multisignature solutions, you can protect your digital

identity and confidently navigate decentralized ecosystems.

CHAPTER 6 WALLET

247

Chapter Summary

Topic Key takeaways

Definition of Wallet Manages public/private keys and gateway to blockchain assets, not physical

storage of coins.

Asymmetric

Cryptography

Private keys sign transactions, public keys verify them, and assets stay

on- chain.

Hot vs. Cold Wallets Hot wallets are online and convenient but less secure; cold wallets are

offline and ideal for long-term storage.

Custodial vs. Non-

Custodial

Custodial wallets rely on third parties; non-custodial wallets give full

ownership and responsibility to the user.

Mnemonic Phrases Critical for wallet recovery, losing it means losing access permanently.

Public and Private

Keys

Core cryptography ensures secure, trustless transactions.

Wallet Setup

Process

Step-by-step procedure including secure backup, password protection, and

test transactions.

Types of Wallets Hardware, software, and paper wallets offer different balances of security

and accessibility.

Advanced Security

Techniques

Multisignature wallets, hidden wallets, sharding backups, and cold storage

enhance protection.

Key Management Proper handling of keys prevents irreversible loss and ensures true financial

sovereignty.

CHAPTER 6 WALLET

249
© Soumaya Erradi 2025
S. Erradi, Web3 Development with Angular, https://doi.org/10.1007/979-8-8688-1886-8_7

CHAPTER 7

Provider

 Introduction

Blockchain technology, at its core, promises decentralization, transparency, and self-

sovereignty. Interacting with a blockchain network involves technical procedures

that require specific knowledge, hardware, and ongoing maintenance. This is where

providers come in. Providers form the essential infrastructure layer that connects

decentralized networks with the users, applications, and developers that rely on them.

They are the unsung heroes of the Web3 movement, quietly handling the complex

backend operations that enable seamless blockchain interactions.

Without providers, mass adoption of blockchain technology would be virtually

impossible. Every user would be forced to run their own full node, a process that

demands significant computational resources and expertise. Instead, providers abstract

these complexities, offering standardized, reliable, and often user-friendly interfaces to

blockchain ecosystems.

In this chapter, we will dive deep into the world of providers: their roles, types,

security considerations, key differences between wallet and RPC providers, and how

their design choices shape the future of blockchain technology.

 Role of Providers in Blockchain

Providers are the silent engines that power nearly every interaction users have with

blockchain networks.

Whether minting an NFT, swapping tokens on a decentralized exchange (DEX),

participating in decentralized finance (DeFi), or simply checking a wallet balance, every

blockchain operation relies, directly or indirectly, on one or more providers.

https://doi.org/10.1007/979-8-8688-1886-8_7#DOI

250

Understanding what providers are, the different types that exist, and why they matter

is fundamental to mastering blockchain development and architecture.

 What Is a Provider?

At its core, a provider is a service or software component that acts as an intermediary

between two parties (Figure 7-1):

• A client (which could be a user, application, or smart contract

platform interface)

• A blockchain network (such as Ethereum, Polygon, Arbitrum,

or Solana)

Providers abstract away the technical complexities of directly communicating with

decentralized networks.

They expose standardized interfaces, typically through protocols like JSON-RPC,

GraphQL, WebSocket, or gRPC, that allow applications to:

• Read blockchain state (e.g., query account balances)

• Submit transactions (e.g., transfer tokens and interact with smart

contracts)

• Listen to blockchain events (e.g., when an NFT is transferred)

Without providers, users and applications would have to operate their own full

blockchain nodes, an impractical requirement for most.

Figure 7-1. Providers as bridges between clients and blockchain networks

CHAPTER 7 PROVIDER

251

 Why Providers Are Needed

Blockchain networks are distributed, complex systems:

• Nodes must validate transactions independently.

• Data must be synchronized across the entire network.

• State queries often require traversing large datasets (especially with

smart contracts).

Running a full node:

• Requires significant storage (Ethereum full node ≈ 1–2TB as of 2025)

• Needs stable, high-bandwidth internet

• Demands constant maintenance (software upgrades, security

patches)

By using providers, dApps and wallets can

• Outsource the heavy lifting of running nodes.

• Accelerate development cycles.

• Improve application uptime and performance.

 Historical Evolution of Providers

In the early days of blockchain (2014–2017), developers interacted with networks like

Bitcoin or Ethereum directly by running local nodes:

• Bitcoin Core clients for Bitcoin

• Geth or Parity (OpenEthereum) clients for Ethereum

This model, while decentralized, was

• Technically difficult for non-specialists

• Resource intensive for applications needing real-time access

• Error-prone due to protocol upgrades (e.g., Ethereum hard forks)

CHAPTER 7 PROVIDER

252

Recognizing the friction, companies like Infura, a well-known blockchain

infrastructure provider, emerged.

Infura allowed developers to interact with Ethereum without maintaining

local infrastructure, simply by sending HTTPS requests to their cloud-managed

Ethereum nodes.

This innovation catalyzed the first Web3 boom:

• ICOs of 2017

• Early DeFi protocols (e.g., MakerDAO)

• NFT experiments (e.g., CryptoKitties)

Today, the provider landscape has expanded massively, supporting dozens of Layer

1 and Layer 2 networks, specialized indexing, transaction relaying, enhanced APIs, and

privacy-preserving technologies. The historical growth of providers is illustrated in

Figure 7-2.

Figure 7-2. Evolution of Providers in Blockchain

 Types of Providers

Providers specialize based on the needs they serve.

While all providers act as blockchain intermediaries, their specific functions

vary widely.

Let's explore each major type in detail.

 Full Node Providers

Full Node Providers run blockchain clients (e.g., Geth, Besu, and Erigon) and expose

their full functionality without significant abstraction.

These nodes:

CHAPTER 7 PROVIDER

253

• Validate all blocks independently

• Maintain the entire blockchain history

• Enable trust-minimized querying and transaction submission

Figure 7-3 illustrates a typical full node provider setup.

Advantages:

• Maximum decentralization

• Direct protocol compliance (no middle layers)

• Full archive access (essential for certain DeFi protocols)

Challenges:

• High hardware costs (SSDs, memory, bandwidth)

• Operational complexity (e.g., handling Ethereum upgrades like

Cancun and Dencun)

Examples:

• Self-hosted Geth node

• Blockdaemon full node services

Figure 7-3. Full Node Provider Setup

 RPC Providers (Remote Procedure Call Providers)

Most dApps use RPC providers to interact with blockchains via lightweight protocols.

RPC providers:

• Abstract away node complexity

• Offer fast read/write access to blockchain data

• Scale horizontally to serve thousands of concurrent users

CHAPTER 7 PROVIDER

254

Standard RPC methods (Ethereum example):

• eth_blockNumber: Latest block number

• eth_getBalance: Wallet balance

• eth_call: Smart contract read without gas cost

• eth_sendRawTransaction: Broadcast signed transactions

Table 7-1 lists common Ethereum RPC methods.

Each transaction executed through these RPC calls consumes gas, the unit of

computational cost required by the Ethereum Virtual Machine (EVM). Gas ensures fair

compensation for node operators and prevents network abuse like infinite loops. (See

Chapter 8 for a more detailed explanation of gas and gas optimization techniques.)

Examples:

• Infura (Ethereum, IPFS)

• Alchemy (Ethereum, Polygon, Arbitrum, Optimism)

• QuickNode (Multi-chain)

Table 7-1. Common RPC Methods for Ethereum

Method Description

eth_blockNumber Returns the number of the most recent block

eth_getBalance Fetches the balance of an address

eth_getTransactionByHash Retrieves a transaction by its hash

eth_sendRawTransaction Submits a signed transaction for broadcast

eth_call Executes a new call without creating a

transaction

net_version Returns the current network ID

 Wallet Providers

Wallet providers specialize in key management and user authentication.

CHAPTER 7 PROVIDER

255

Their responsibilities include:

• Securely storing private keys

• Prompting users to sign transactions

• Managing sessions and dApp connections

Types of Wallet Providers:

• Hot Wallets: Browser extensions (MetaMask, Rabby)

• Mobile Wallets: Trust Wallet, Rainbow

• Hardware Wallets Integration: Ledger Live with MetaMask

Example Flow (Figure 7-4):

 1. dApp requests signature from MetaMask.

 2. MetaMask prompts the user for approval.

 3. User signs, and MetaMask either sends or returns the signed

transaction.

Figure 7-4. Wallet Provider Transaction Signing Process

CHAPTER 7 PROVIDER

256

 Gateway Providers

Some providers offer more than basic RPC access, bundling:

• Enhanced APIs

• Real-time webhooks

• Developer analytics

• NFT metadata hosting

• Gas price optimization APIs

These gateway providers aim to accelerate development and improve dApp

reliability.

Examples:

• Alchemy Enhanced APIs: Transaction receipts with richer metadata.

• Moralis: User authentication + NFT querying + database syncing.

Why Important:

By abstracting blockchain complexities even further, gateways reduce development

time dramatically.

 Indexing and Querying Providers

Blockchain data is not naturally structured for easy querying:

• Finding all NFTs owned by an address

• Searching for historical DeFi positions

• Listing DAO proposals and votes

Indexing providers solve this by:

• Running custom indexers

• Structuring blockchain data into GraphQL or REST endpoints

• Allowing advanced, application-specific queries

Figure 7-5 shows how indexing providers structure blockchain data.

CHAPTER 7 PROVIDER

257

Examples:

• The Graph: Open source, subgraph-based indexing.

• Covalent: Rich REST APIs for blockchain data.

Figure 7-5. Indexing Providers Workflow

 Hybrid Providers

Many modern providers combine multiple functionalities:

• RPC + WalletConnect integration

• Indexing + Webhooks

• Multi-chain support (Ethereum + Solana + BNB Chain)

Examples:

• Alchemy: RPC + Enhanced APIs + NFT APIs

• Ankr: RPC + decentralized node access

Hybridization helps developers avoid stitching multiple providers manually.

 Why Providers Are Critical to Blockchain Growth

Without providers:

• Decentralized applications would be much slower and harder

to build.

• Users would face technical hurdles setting up full nodes.

• Enterprises would hesitate to integrate blockchain solutions at scale.

CHAPTER 7 PROVIDER

258

Providers enable:

• Scalability (handling millions of users)

• Accessibility (simple APIs instead of node setup)

• Resilience (redundancy, fallbacks)

In Web2, companies rely on cloud providers like AWS, Azure, and Google Cloud.

In Web3, dApps and users rely on providers like Infura, Alchemy, QuickNode, and

increasingly decentralized alternatives to power the decentralized world.

 Network Considerations for Providers

When selecting a provider for blockchain applications, technical performance alone is

not sufficient. One must also evaluate how a provider manages network connections,

handles reliability challenges, ensures security against external and internal threats, and

respects user privacy.

In decentralized systems, the provider becomes a critical trust layer. Any

weaknesses at this level can expose users to attacks, cause downtime in critical financial

systems, and undermine the very goals of decentralization. A deep understanding of

network considerations is therefore mandatory for any serious blockchain architect or

developer.

This section dives into the four major areas that define a provider's operational

quality: performance, reliability, security, and privacy.

 Performance Metrics

Performance is one of the first things users notice when interacting with blockchain-

based applications. If loading times are slow, transactions fail to broadcast, or data

appears outdated, users lose confidence immediately.

When evaluating the performance of providers, the most critical metrics include the

following metrics.

 Latency

Latency measures the time taken between a user action and the system's response.

CHAPTER 7 PROVIDER

259

In blockchain terms,

• Latency is the delay between submitting a transaction request and

receiving confirmation that it has been accepted by a node.

• It also applies when reading data. For example, fetching an account

balance or smart contract state.

Low latency is essential for

• High-frequency trading applications (e.g., decentralized exchanges

like Uniswap).

• Gaming applications relying on real-time blockchain events.

• Wallets needing to display near-instant balance updates.

Sources of Latency:

• Geographical distance between user and provider servers.

• Internal processing time at the provider's data centers.

• Blockchain network congestion itself.

Figure 7-6 visualizes latency in provider server communication.

Figure 7-6. Latency in Provider Infrastructure

CHAPTER 7 PROVIDER

260

Ideal Targets:

For consumer-grade applications, latency under 200 ms is considered excellent. For

financial applications, sub-100 ms is ideal.

 Throughput

Throughput defines how many requests per second (RPS) a provider can handle reliably

without performance degradation.

In blockchain contexts, this could include

• Simultaneous eth_getBalance queries for many users

• Bulk reading thousands of NFTs

• Submitting many small transactions for batch minting or airdrops

Higher throughput allows

• Scalability of dApps during high traffic (e.g., NFT launches)

• Preventing rate limiting during critical operations

Factors influencing throughput (Figure 7-7):

• Backend architecture (load balancers and sharded databases)

• Node software optimization (e.g., Geth vs. Erigon performance)

• Horizontal scaling capabilities (adding more servers dynamically)

CHAPTER 7 PROVIDER

261

Figure 7-7. Provider Throughput Comparison

Example:

During high-profile NFT launches, throughput needs often spike by 10x within

minutes. Providers unable to scale suffer outages and API errors, leading to failed mints

and lost revenue.

 Uptime

Uptime measures the percentage of time the provider’s services are available without

interruption.

Even brief downtimes can cripple decentralized applications, especially financial

systems handling live assets.

Typical uptime tiers (Figure 7-8):

• 99.9% (“Three Nines”): Acceptable for basic dApps

• 99.99% (“Four Nines”): Standard for DeFi and financial applications

• 99.999% (“Five Nines”): Desired for mission-critical blockchain

infrastructure (e.g., liquid staking, cross-chain bridges)

CHAPTER 7 PROVIDER

262

Strategies Providers Use for Uptime:

• Geographic redundancy (multiple regions and availability zones).

• Automated failover between cloud providers (AWS, Azure, GCP).

• Proactive DDoS protection and traffic management.

Figure 7-8. Leading Provider Uptime

 Global Geographic Coverage

Since blockchain users are worldwide (Figure 7-9), providers must distribute their

infrastructure accordingly:

• North America, Europe, Asia, Africa, and South America

• Emerging markets where Web3 adoption is growing rapidly (e.g.,

India and Nigeria)

CHAPTER 7 PROVIDER

263

Global server presence reduces

• Connection latency

• Risk of regional outages

• Legal exposure to country-specific bans or service disruptions

Example:

A dApp that’s only performant for users in North America would fail to scale globally,

especially as Web3 adoption grows fastest in Asia and Africa.

Figure 7-9. Global Provider Server Deployment

 Reliability and Failover Strategies

Reliability is not just about uptime in normal conditions; it’s about how gracefully a

system handles unexpected failures.

Blockchain applications, especially financial ones, must maintain availability during

• Network outages

• Hardware failures

• Regional disasters

• DDoS attacks

CHAPTER 7 PROVIDER

264

 Multi-region Redundancy

Leading providers maintain clusters of nodes and API gateways across multiple physical

regions and cloud providers. Figure 7-10 shows a multi-region setup for failover

reliability.

If an outage occurs in one region, traffic is automatically routed to another without

interruption.

Figure 7-10. Multi-region Provider Setup

 Automatic Retries and Circuit Breakers

When a request fails (e.g., RPC timeout), applications should:

• Retry automatically with exponential backoff (wait 1s, then 2s,

then 4s...).

• Use circuit breakers to prevent overwhelming a failing system.

CHAPTER 7 PROVIDER

265

Example:

An NFT marketplace may implement retries if the primary RPC fails to respond

within 300 ms. After three failed attempts, it switches to a backup provider.

 Provider Fallback Mechanisms

Fallback systems mean integrating multiple providers simultaneously and dynamically

switching between them when errors are detected. Provider failover logic is depicted in

Figure 7-11.

Popular fallback designs include

• Primary–Secondary: Use one provider until it fails.

• Round-Robin: Alternate providers on every request.

• Weighted Failover: Prefer higher-performance providers until they

degrade.

CHAPTER 7 PROVIDER

266

Figure 7-11. Provider Fallback Logic

 Security Implications

Providers, by their nature, become trusted intermediaries.

If a provider is compromised, it can:

• Serve malicious blockchain data to applications.

• Steal users’ private data if wallet interactions are mishandled.

• Delay or censor transactions selectively.

Understanding security risks is essential when designing robust dApps.

CHAPTER 7 PROVIDER

267

 Man-in-the-Middle (MITM) Risks

If connections between applications and providers are not encrypted (using HTTPS/

TLS), attackers can intercept and manipulate traffic.

Attack Scenario (Figure 7-12):

• A user submits a transaction.

• A malicious actor intercepts the transaction, modifies it (e.g., changes

the recipient address), and then forwards it.

Figure 7-12. Man-in-the-Middle Attack on Providers

Mitigation:

Always enforce HTTPS, verify SSL certificates, and optionally use end-to-end

encryption techniques where feasible.

 Data Injection Attacks

An insecure provider could inject falsified responses to RPC requests, tricking a

dApp into:

• Displaying incorrect balances

• Signing fraudulent transactions

• Showing incorrect smart contract states

CHAPTER 7 PROVIDER

268

Mitigation:

Use providers that offer verifiable proof of blockchain state (e.g., zk-proofs or Merkle

proofs in the future).

 Key Management

Wallet providers must manage user private keys securely:

• Never transmit private keys over the network.

• Use encrypted local storage, hardware security modules (HSMs), or

hardware wallets.

Failures in key management are catastrophic, leading to full asset loss.

 Privacy Considerations

Decentralization promotes pseudonymity, but providers can unintentionally erode user

privacy if not carefully designed.

 IP Address Exposure

Whenever a user connects to a provider, their IP address is revealed, creating a link

between the user and their blockchain activity.

Example:

Using Infura directly from a web browser without a VPN exposes both the IP and the

wallet address to the provider.

 Transaction Metadata Leakage

Providers may log

• Smart contract interactions

• Token transfers

• NFTs minted

Over time, this metadata can be used to profile users.

CHAPTER 7 PROVIDER

269

 Techniques to Preserve Privacy

Solutions include (Figure 7-13)

• VPNs and Tor routing to obfuscate IPs

• Using privacy-focused providers

• Homomorphic encryption techniques (experimental)

Figure 7-13. Enhancing Privacy in Providers

Example of Privacy-Preserving Approach:

BlockWallet encrypts transactions locally and routes them through multiple nodes to

protect user anonymity.

 Comparing Wallet Providers vs. RPC Providers

The blockchain space is powered by an intricate network of providers, but not all

providers serve the same purpose.

Understanding the critical differences between wallet providers and RPC providers

is key to building secure, scalable, and user-friendly decentralized applications.

Although both types act as intermediaries between users/applications and

blockchain networks, they operate at different layers of the blockchain interaction stack

and have different threat models, infrastructure needs, and design implications.

This section provides a comprehensive analysis of wallet providers and RPC

providers, with detailed technical insights, real-world examples, and architectural

comparisons.

CHAPTER 7 PROVIDER

270

 Wallet Providers

A wallet provider is responsible for managing the keys, identities, and signatures

necessary for interacting securely with a blockchain.

While blockchains are public ledgers, writing to them requires proving ownership of

a private key associated with a blockchain address.

Wallet providers facilitate this ownership without forcing users to manage

cryptographic materials manually.

 Key Responsibilities of Wallet Providers

 Private Key Management

At the heart of blockchain identity lies the private key, a piece of cryptographic

information that allows a user to authorize transactions and claim ownership over

blockchain assets.

Wallet providers ensure:

• Secure storage of private keys.

• Isolation of keys from dApp environments.

• Recovery mechanisms (seed phrases, social recovery, smart

contract wallets).

Without proper key management:

• Assets can be stolen.

• Users can lose access permanently.

• dApps can suffer from fraud and legal liabilities.

Technical Approaches:

• Software-based hot wallets (encrypted private keys stored locally).

• Hardware-based wallets (private keys stored on dedicated hardware

chips, never exposed to the computer or network).

• Smart contract wallets (abstract accounts managed by smart

contracts, enabling features like social recovery).

CHAPTER 7 PROVIDER

271

 Transaction Construction and Signing

Wallet providers are responsible for

• Receiving transaction payloads from dApps

• Prompting users to approve or reject the transaction

• Applying cryptographic signatures using the user’s private key

• Optionally broadcasting the signed transaction to the network

Example Flow:

 1. dApp constructs a transaction (e.g., swap 1 ETH for DAI).

 2. Wallet provider (e.g., MetaMask) shows the transaction details.

 3. User approves.

 4. Wallet signs the transaction locally.

 5. The dApp either broadcasts it directly or lets the wallet broadcast.

Figure 7-14 details the transaction signing process.

CHAPTER 7 PROVIDER

272

Figure 7-14. Wallet Provider Signing Flow

 Session Management and Permissions

Modern wallet providers manage sessions between users and dApps:

• Which dApps a wallet is connected to.

• Which accounts are exposed.

CHAPTER 7 PROVIDER

273

• Which permissions (signing, read-only) are granted.

Best practices:

• Session expiration mechanisms.

• User notifications for new connection requests.

• Limiting dApp access only to necessary data.

 Categories of Wallet Providers

Wallet providers come in various flavors (Table 7-2):

Table 7-2. Wallet Provider Categories

Type Examples Characteristics

Browser extension

wallets

MetaMask, Rabby, Phantom Easy to integrate; fast UX; browser

dependency

Mobile wallets Trust Wallet, Rainbow Mobile-native; deeper hardware access

Smart Contract

wallets

Argent, Safe (formerly Gnosis

Safe)

Programmable security; social recovery

Hardware wallets Ledger, Trezor Cold storage; physical confirmation

required

 Real-World Case Study: MetaMask

MetaMask, the most popular Ethereum wallet, illustrates how a wallet provider operates

at scale:

• Key Storage: Locally encrypted inside the browser or mobile device.

• Connection Model: User manually connects to each dApp.

• Signing: Only transaction payloads are exposed to MetaMask, never

full user private keys.

• Fallback RPC: MetaMask uses Infura by default to submit

transactions after signing, separating the wallet function from the

node relay function.

CHAPTER 7 PROVIDER

274

Important Concept:

Wallet providers and RPC providers are often combined at the UX level (e.g.,

MetaMask users unknowingly using Infura), but conceptually they are separate roles.

 RPC Providers

While wallet providers manage user identities and signatures, RPC providers focus

purely on data access and transaction relaying.

RPC stands for Remote Procedure Call, a computer science term referring to calling

functions on remote servers as if they were local.

In blockchain contexts, RPC protocols allow applications to:

• Query blockchain state (e.g., account balances, smart contract

storage).

• Submit signed transactions for inclusion in the blockchain.

• Subscribe to blockchain events (e.g., new blocks, emitted events).

 Key Responsibilities of RPC Providers

 API Exposure

RPC providers expose blockchain networks via APIs such as

• JSON-RPC over HTTP/S: Most common for Ethereum and EVM-

compatible chains.

• WebSocket APIs: For real-time event subscriptions.

• GraphQL APIs: For structured, flexible querying (used in newer

chains like The Graph).

Common Ethereum JSON-RPC methods include (Table 7-3):

• eth_blockNumber

• eth_getTransactionReceipt

• eth_estimateGas

• eth_sendRawTransaction

CHAPTER 7 PROVIDER

275

Table 7-3. RPC Provider JSON-RPC Methods

Method Description Parameters Results

eth_blockNumber Get the latest block number — Block number

eth_

getTransactionReceipt

Get the receipt of a transaction Transaction hash Receipt object

eth_estimateGas Estimate gas needed for a

transaction

Transaction object Gas amount

eth_

sendRawTransaction

Submit a signed transaction Signed

transaction

Transaction

hash

 Node Management and Scaling

Behind the scenes, RPC providers:

• Operate pools of blockchain nodes.

• Monitor node health and synchronization.

• Implement caching layers for frequent queries.

• Scale horizontally across regions to support global dApp usage.

High-end providers like Alchemy or QuickNode maintain:

• Dedicated node fleets (not just shared infrastructure).

• Archive nodes (full history of blockchain state).

• Real-time analytics dashboards.

 Real-World Case Study: Infura

Infura operates one of the largest Ethereum RPC infrastructures:

• Serves billions of API requests per day.

• Provides Ethereum, IPFS, and Layer 2 (Optimism and Arbitrum)

endpoints.

CHAPTER 7 PROVIDER

276

• Critical infrastructure for dApps like MetaMask, Uniswap, and

OpenSea.

Notably, in November 2020, Infura experienced a brief outage during an Ethereum

upgrade, highlighting that centralized RPC dependencies can become points of failure,

even in decentralized ecosystems.

 Key Differences: A Deeper Comparison

While wallet providers and RPC providers can both be integrated into dApps, their

internal architectures and risk models are fundamentally distinct. Table 7-4 compares

main security concerns for wallet vs. RPC providers.

Table 7-4. Security Comparison: Wallet vs. RPC Providers

Aspect Wallet Providers RPC Providers

Focus User keys, identity, transaction signing Blockchain data access, transaction

broadcasting

Handles

private keys

Yes No

User

authentication

Required Not needed

Security risks Key theft, phishing, social engineering Data integrity issues, censorship

Examples MetaMask, WalletConnect, Ledger Live Infura, Alchemy, QuickNode

Monetization Fee on swaps, premium services (e.g.,

MetaMask Swaps)

API usage tiers, dedicated node

hosting

Failure impact Total asset loss (if compromised) Data unavailability, transaction delays

 Choosing the Right Provider(s)

In practice, most modern blockchain applications require both types of providers:

• Wallet providers for user interaction and signing.

• RPC providers for data querying and transaction relaying.

CHAPTER 7 PROVIDER

277

Designing a production-ready dApp involves

• Allowing users to connect with different wallets.

• Supporting multiple RPC endpoints for reliability.

• Separating signing (wallet) from broadcasting (RPC) responsibilities

cleanly.

Best Practice Tip:

Architect dApps to treat wallet and RPC providers as pluggable modules, allowing

easy switching or redundancy for both.

 Provider Selection Criteria

Choosing the right provider is one of the most critical architectural decisions when

building a blockchain-based application.

The provider becomes a core part of the system’s reliability, performance, security,

and even legal compliance.

A poor choice can result in:

• Downtime at critical moments

• User loss due to slow performance

• Security breaches

• Legal vulnerabilities due to regulatory non-compliance

The right provider, on the other hand, can help your project scale confidently, deliver

excellent user experiences, and position itself at the forefront of blockchain innovation.

This section examines all major factors that must be considered when evaluating

and selecting providers, going far beyond simple uptime guarantees.

 Speed and Performance

Speed is often the first tangible quality users perceive, even before security or

decentralization becomes relevant.

A blockchain application that lags during wallet connection, transaction submission,

or balance display creates user frustration immediately.

CHAPTER 7 PROVIDER

278

Fast providers are critical to building products that feel modern, reliable, and

responsive.

 Key Performance Indicators (KPIs)

Table 7-5 summarizes the main performance indicators to consider when evaluating

blockchain providers. These metrics help assess speed, scalability and suitability for

different Web3 applications.

Table 7-5. Key Performance Indicators (KPIs)

Metric Ideal Value Why It Matters

API latency < 200 ms roundtrip globally Faster UI updates; better trading UX

Throughput

capacity

10,000+ RPS (requests per

second)

Handles surges during NFT drops and DeFi

trading spikes

Block propagation

speed

Immediate or near-instant Critical for miners/validators and real-time

apps

Archive access Available on demand Supports historical queries (important for DeFi

apps)

 Importance of Regional Distribution

Global audiences demand regional optimization:

• Users in Europe should not connect to servers in North America

unless necessary.

• Emerging markets (Africa and Southeast Asia) should have minimal

latency.

Leading providers like Alchemy, Infura, and Ankr maintain distributed server fleets

to minimize geographic latency.

 Case Study: NFT Minting Stress Test

During a popular NFT mint (e.g., Otherside by Yuga Labs), RPC providers faced sudden

surges of 50x normal traffic within seconds.

CHAPTER 7 PROVIDER

279

Projects connected to scalable providers succeeded, while others saw:

• API rate limits exceeded

• Transactions stuck pending

• Failed mints and major financial losses

 Decentralization and Trust Models

Blockchain aims for decentralization, but many providers today are centralized entities.

Choosing a provider also means deciding how much trust you are placing in a single

infrastructure point.

 Levels of Decentralization

When evaluating providers, it’s important to understand the varying degrees of

decentralization they offer. Table 7-6 outlines three common levels, their characteristics,

and examples:

Table 7-6. Levels of Decentralization in Providers

Level Characteristics Examples

Fully centralized Single entity controls all nodes and APIs Infura, Alchemy (default configurations)

Partially

decentralized

Some nodes spread across different

operators

Pocket Network, Ankr decentralized

RPC

Self-hosted You run your own node(s) Complete control, maximum

decentralization

 Why Trust Models Matter

Centralized RPC Risks:

• Single-point failure: If the provider goes down, your app goes down.

• Censorship potential: Provider could block certain transactions (e.g.,

OFAC compliance).

CHAPTER 7 PROVIDER

280

• Data manipulation: Provider could lie about blockchain state (though

difficult without wide collusion).

Decentralized RPC Benefits:

• Multiple independent operators relay requests.

• Reduced censorship risk.

• Greater resilience to attacks and political pressure.

 Case Study: Infura Outage (2020)

In November 2020, Infura suffered a major outage during an Ethereum network upgrade.

Because many wallets (e.g., MetaMask) were configured to use Infura exclusively:

• Users could not send transactions.

• Many DeFi apps broke temporarily.

• Confidence in centralized provider reliance was shaken.

 Security and Compliance

Security must be built into your provider choice, not assumed afterward.

While blockchains themselves are highly secure, the infrastructure connecting to

them (providers) can be attacked, censored, or surveilled.

 Security Factors to Evaluate

When selecting a provider, ensuring strong security measures is crucial to protect

applications and users from vulnerabilities. Table 7-7 summarizes key factors to assess

and their recommended best practices:

CHAPTER 7 PROVIDER

281

Table 7-7. Security Factors for Provider Evaluation

Factor Description Best Practice

HTTPS/TLS Secure data in transit Mandatory

Data

Validation

Ensure no injected data manipulation Always validate RPC responses

Key Isolation No key leakage between wallet and RPC

layers

Use separation of concerns

DDoS

Protection

Handle high-volume attacks Confirm provider anti-DDoS

infrastructure

 Regulatory and Legal Compliance

Providers must sometimes comply with regulations:

• KYC/AML laws (e.g., in exchanges/wallet providers)

• OFAC sanctions compliance (blocking sanctioned wallets)

• GDPR (Europe) and CCPA (California) for data privacy

If your app handles sensitive industries (e.g., finance, healthcare, and national

security), selecting a provider with clear compliance policies is essential.

 Case Study: Tornado Cash Sanctions (2022)

When the US government sanctioned Tornado Cash smart contracts, centralized

providers like Infura and Alchemy began blocking RPC requests involving sanctioned

addresses.

Consequence:

Even though blockchains are decentralized, users interacting through certain

providers experienced censorship.

 Cost and Pricing Structures

While many providers offer free tiers, usage can become expensive quickly as

dApps scale.

CHAPTER 7 PROVIDER

282

Common pricing models:

• Request-based (per million API calls)

• Bandwidth-based (per GB transferred)

• Dedicated node hosting (monthly subscription)

 Cost Factors to Compare

Pricing can vary significantly across providers depending on usage levels, request

volume, and whether dedicated infrastructure is required. Table 7-8 outlines typical

costs to consider when selecting an RPC provider:

Table 7-8. Typical RPC Provider Pricing

Feature Typical Costs

Free tier 1M–3M requests per month

Paid APIs ~$50–$300/month for 20M–100M requests

Dedicated

nodes

$500–$2,000+/month depending on chain and service

 Optimizing Costs

• Use caching aggressively to minimize RPC hits.

• Optimize frontend apps to batch multiple blockchain queries.

• Negotiate enterprise deals if scaling past free tiers.

 Developer Experience (DX)

The developer experience (DX) can make or break a project's momentum.

Key DX factors:

• Clear documentation

• Easy onboarding (SDKs, examples, quickstarts)

CHAPTER 7 PROVIDER

283

• Multilingual SDK support (JavaScript, Python, Rust, Go, etc.)

• Community support and forums

• Analytics dashboards for usage monitoring

 Multichain and Scalability Support

Web3 is not just about Ethereum anymore.

Leading projects often operate across:

• Ethereum mainnet

• Layer 2s (Optimism, Arbitrum, zkSync, and Starknet)

• Alternative L1s (Solana, Avalanche, and Polygon)

Choosing a provider that natively supports multichain development reduces

integration complexity dramatically. Table 7-9 compares provider multichain

capabilities.

Table 7-9. Multichain Provider Support

Provider Supported Chains

Alchemy Ethereum, Polygon, Arbitrum, Optimism

QuickNode Ethereum, Solana, BSC, Polygon, Fantom

Infura Ethereum, Optimism, Arbitrum

 Future-Readiness: Emerging Technologies

Providers must also be evaluated for readiness in emerging areas:

• Zero-knowledge proof (ZK) networks (zkSync and StarkNet)

• Decentralized storage (IPFS and Filecoin integrations)

• Privacy-enhanced blockchains (Aztec and Secret Network)

Choosing a forward-compatible provider now ensures smoother scaling later.

CHAPTER 7 PROVIDER

284

 Advanced Provider Topics

As the blockchain space matures, the demands placed on providers are growing more

complex.

While basic RPC access and wallet connections are essential, advanced applications

often require custom infrastructure solutions, especially in areas like DeFi, gaming,

and Layer 2 scaling.

 Self-Hosting RPC Endpoints

One approach to achieving maximum control and decentralization is self-hosting

your own blockchain nodes rather than relying on third-party providers.

Self-hosting provides:

• Full sovereignty over your connection to the blockchain

• Freedom from API rate limits or third-party censorship

• Direct access to all node data, including historical state (with

archive nodes)

However, it introduces significant operational complexity and costs.

 Requirements for Running Full Nodes

Hardware Requirements (Ethereum Example):

• SSD storage (at least 2 TB for mainnet full node; 12 TB+ for full

archive node)

• High-throughput, stable internet (at least 100 Mbps recommended)

• Reliable server uptime (≥99.9%)

• At least 32 GB RAM (recommended)

Software Choices:

• Geth (Ethereum's Go implementation)

• Nethermind (optimized for performance, especially on Windows)

• Besu (enterprise-oriented, Java implementation)

CHAPTER 7 PROVIDER

285

Figure 7-15 illustrates a self-hosted full node setup.

Figure 7-15. Self-Hosted Full Node Architecture

 Operational Challenges

• Synchronization Time: Initial sync for Ethereum full nodes can take

days or weeks, depending on hardware and network conditions.

• Maintenance Overhead:

• Node upgrades (hard forks and security patches)

• Monitoring node health (peering status and sync status)

• Protecting nodes from DDoS attacks

CHAPTER 7 PROVIDER

286

• Cost Factors:

• Cloud servers capable of running archive nodes can cost $500–

$1,000+ per month.

• Or you must manage your own on-premises servers.

 When Self-Hosting Makes Sense

Table 7-10 highlights common scenarios where self-hosting blockchain nodes is

beneficial, along with the primary reasons organizations might choose this approach.

Table 7-10. Scenarios and Benefits of Self-Hosting Blockchain Nodes

Scenario Why Self-Host?

Financial protocols (DeFi) Need for absolute transaction censorship resistance

DAOs and Governance tools Want to avoid reliance on centralized entities

Analytics platforms Require full historical chain access without provider limits

Blockchain infrastructure

companies

Provide service to others based on self-hosted nodes

 Hybrid Architectures

Many projects deploy a hybrid model:

• Primary reliance on third-party RPCs (for speed and scale)

• Secondary fallback to self-hosted nodes (for resilience and

sovereignty)

This balances cost, performance, and decentralization. Figure 7-16 shows a hybrid

setup combining self-hosted and RPC nodes.

CHAPTER 7 PROVIDER

287

Figure 7-16. Hybrid Architecture for Providers

 Decentralized RPC Networks

Centralized providers, while convenient, create single points of failure.

Decentralized RPC networks aim to solve this problem by distributing the

responsibility of serving RPC requests across a network of independent nodes.

Key Features of Decentralized RPC

• Multiple node operators handle traffic, reducing reliance on any

single party.

• Rewards for node operators incentivize reliable service (typically via

blockchain tokens).

• Dynamic routing ensures traffic is directed to available,

healthy nodes.

• Censorship resistance: No central authority can block specific

addresses or transactions.

Examples of Decentralized RPC Networks

Table 7-11 lists popular decentralized RPC networks.

CHAPTER 7 PROVIDER

288

Table 7-11. Decentralized RPC Network Examples

Network Description

Pocket network RPC layer for dozens of chains, uses POKT token for

incentivization

Ankr decentralized RPC RPC endpoints powered by node pools

Chainstack decentralized

infrastructure

Hybrid decentralized node marketplace

Challenges of Decentralized RPC

• Consistency of Data: Ensuring all nodes are synced and trustworthy.

• Latency: Routing across decentralized networks may introduce

slight delays.

• Economic Sustainability: Token incentive models must remain

viable long-term.

 Case Study: Pocket Network Growth

Pocket Network, founded in 2017, has become one of the largest decentralized RPC

networks:

• Serves billions of relayed requests monthly.

• Supports Ethereum, Polygon, Solana, and dozens of other chains.

• Uses economic slashing to punish misbehaving nodes.

 Provider Aggregators and Fallback Systems

Another advanced technique for achieving resilience and performance is using multiple

providers simultaneously.

Instead of trusting a single RPC provider, your application can:

• Attempt primary provider first.

• On error, retry with backup providers.

CHAPTER 7 PROVIDER

289

• Distribute load across multiple providers simultaneously.

This reduces downtime risk dramatically.

 Example Strategies

When using multiple providers for improved resilience, developers can choose from

different aggregation strategies. Table 7-12 summarizes the most common approaches:

Table 7-12. Provider Strategy Types for Aggregation

Strategy Description

Simple failover Use Provider B if Provider A fails

Weighted load balancing 70% traffic to Provider A, 30% to Provider B

Intelligent routing Dynamically select a provider based on latency, health, or

geolocation

 Libraries Supporting Provider Aggregation

• ethers.js FallbackProvider: Allows configuring multiple providers in

order of priority.

• web3modal: Frontend library supporting multi-wallet, multi-

provider connection options.

• Custom SDKs: Some apps write their own provider

orchestration logic.

Example in ethers.js:

1. import { providers } from 'ethers';

2.

3. const provider = new providers.FallbackProvider([

4. new providers.InfuraProvider('mainnet', INFURA_KEY),

5. new providers.JsonRpcProvider('https://rpc.ankr.com/eth'),

6. new providers.AlchemyProvider('mainnet', ALCHEMY_KEY),

7.]);

CHAPTER 7 PROVIDER

290

This fallback system ensures maximum uptime and minimal disruption.

 Multichain Application Design

Modern applications often must support multiple blockchains simultaneously,

especially in DeFi, NFT marketplaces, and bridges.

A multichain-ready application must:

• Maintain connections to RPC endpoints across chains (Ethereum,

Polygon, Arbitrum, Solana, etc.).

• Handle differing transaction formats (e.g., Solana vs. EVM).

• Dynamically switch between providers based on user-selected chain.

 Evolving Responsibilities of Providers

Blockchain technology is often described as "trustless," yet the reality is more nuanced.

Trust shifts: from centralized authorities to decentralized protocols, from traditional

institutions to cryptographic proofs. In that landscape, providers emerge as critical

actors: they are the invisible scaffolding that supports every blockchain application.

 Best Practices for Working with Providers

To build production-ready applications, developers should:

Separate Concerns:

• Treat wallet providers and RPC providers as distinct modules.

• Never expose private keys to any RPC provider.

Design for Redundancy:

• Always configure fallback providers.

• Prepare for partial network failures gracefully.

Prioritize User Privacy:

• Minimize metadata leakage.

• Use decentralized RPC networks where possible.

CHAPTER 7 PROVIDER

291

Plan for Multichain Reality:

• Abstract blockchain interactions behind chain-agnostic layers.

• Choose providers that natively support multiple chains.

Stay Flexible:

• Provider ecosystems evolve rapidly.

• Architect your application to switch providers if needed, without

major refactoring.

 The Future of Providers

The next generation of blockchain applications will demand even more from providers.

Key trends shaping the future include:

 1. Decentralized Infrastructure at Scale

Decentralized RPC networks like Pocket Network and Ankr are

just the beginning. Future decentralized networks will offer:

• Peer discovery without centralized servers.

• Verifiable computation proofs.

• Node reputation systems to ensure quality.

 2. Zero-Knowledge Proofs for Trustless RPCs

Imagine querying blockchain data and receiving a cryptographic

proof that the response is accurate – no need to trust the provider.

Early research in zkRPC aims to make this vision a reality:

• RPC providers will return both data and zk-proofs.

• dApps will verify proofs locally before trusting responses.

 3. Privacy-Preserving Provider Interactions

Increased awareness of blockchain metadata privacy will drive

adoption of:

• Tor and VPN routing at the provider layer.

• Homomorphic encryption for private queries.

CHAPTER 7 PROVIDER

292

• Private smart contract execution networks (e.g., Secret

Network, Aztec).

Future providers must integrate privacy as a default, not an optional add-on.

 4. Multichain Orchestration as a Standard

Already today, leading dApps operate across 5–10 blockchains.

Tomorrow, seamless multichain orchestration (handling wallets,

transactions, and queries across dozens of Layer 1s and Layer 2s)

will become the norm.

Providers that offer unified multichain APIs, SDKs, and smart

routing will dominate. Figure 7-17 visualizes multichain

orchestration for providers.

Figure 7-17. Multichain Orchestration Future Vision

CHAPTER 7 PROVIDER

293

 Conclusion

Blockchain aims to build systems that don't rely on trust, but until fully decentralized,

verifiable infrastructure is the norm, providers remain trusted bridges in the Web3

ecosystem.

Selecting, integrating, and designing around providers is not just a technical

decision; it’s a matter of philosophy:

• How much do you want to decentralize?

• How much resilience do you require?

• How much trust are you willing to outsource?

Informed developers and architects treat providers with the respect they deserve,

designing architectures that leverage their strengths while mitigating their weaknesses.

Providers today are infrastructure. Providers tomorrow will be protocols. The future

belongs to those who build with that vision in mind.

 Chapter Summary

Topic Key Takeaways

Definition of

Providers

Providers are intermediaries connecting clients (users, apps) with blockchain

networks.

Types of Providers Full node, RPC, wallet, gateway, indexing, and hybrid providers with different

roles and capabilities.

Performance

Considerations

Metrics like latency, throughput, uptime, and global server distribution affect

user experience.

Reliability and

Failover

Multi-region setups, fallback mechanisms, and circuit breakers ensure high

availability.

Security and

Privacy

TLS encryption, key isolation, protection against MITM attacks, and privacy-

preserving techniques.

(continued)

CHAPTER 7 PROVIDER

294

Topic Key Takeaways

Wallet vs. RPC

Providers

Wallet providers manage keys and signing; RPC providers handle data

querying and transaction relay.

Provider Selection

Criteria

Evaluate speed, decentralization, security, compliance, cost, and multichain

support.

Advanced Topics Self-hosting nodes, decentralized RPC networks, multi-provider aggregation,

and hybrid architectures.

Future of Providers Moving toward decentralized protocols, zkRPC verification, enhanced privacy,

and multichain orchestration.

CHAPTER 7 PROVIDER

295
© Soumaya Erradi 2025
S. Erradi, Web3 Development with Angular, https://doi.org/10.1007/979-8-8688-1886-8_8

CHAPTER 8

Smart Contracts
and Decentralized
Applications

 Introduction

Smart contracts and decentralized applications (dApps) form the core building blocks

of Web3. While previous chapters introduced blockchain fundamentals and providers,

this chapter shifts focus to programmable, self-executing agreements that run directly

on decentralized networks.

In this chapter, you will

• Understand what smart contracts are and how they differ from

traditional contracts

• Explore their internal architecture, lifecycle, and common design

patterns

• Learn how they enable decentralized finance, NFTs, DAOs, gaming,

and supply chain solutions

• Discover the tools and frameworks used to write, test, deploy, and

integrate smart contracts into real-world dApps

By the end of this chapter, you will have a solid understanding of how to design and

implement smart contracts and connect them to decentralized applications, preparing

you to build fully functional Web3 solutions in the upcoming chapters.

https://doi.org/10.1007/979-8-8688-1886-8_8#DOI

296

 Deep Dive into Smart Contracts

 What Are Smart Contracts?

A smart contract is a self-executing piece of code stored on a blockchain that runs when

predetermined conditions are met. Figure 8-1 visually compares a traditional contract

process with a smart contract workflow.

It acts as an autonomous agreement: once deployed, it can no longer be changed

and always executes as written, not as intended.

The term “smart contract” was coined in the 1990s by cryptographer Nick Szabo,

long before Ethereum existed. Szabo envisioned computer protocols that could enforce

contractual agreements without human intervention, the kind of automation we now

associate with blockchain-powered smart contracts.

 Core Properties

Smart contracts, especially as implemented on Ethereum and other EVM-compatible

chains, are defined by several key properties. Table 8-1 outlines the core properties that

make smart contracts deterministic, immutable, and autonomous.

Table 8-1. Core Properties of Smart Contracts

Property Description

Deterministic Given the same input, a smart contract will always produce the same output.

Immutable Once deployed, the contract code cannot be altered. Only new versions can be

deployed.

Transparent Anyone can inspect the code and its state (on public blockchains).

Trustless Execution does not require a trusted third party.

Autonomous Once triggered, contracts execute on their own, without intermediaries.

These characteristics make smart contracts ideal for financial, legal, and

governance applications, where verifiability and predictability are paramount.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

297

 How Smart Contracts Differ from Traditional Contracts

The comparison between traditional and smart contracts is summarized in Table 8-2.

Table 8-2. Traditional Contracts vs. Smart Contracts

Feature Traditional Contract Smart Contract

Medium legal document Computer code

Enforcement Courts or intermediaries Blockchain network

Execution manual Automatic

Modification negotiated immutable

Transparency private public (on-chain)

Cost of

enforcement

high low (gas fees only)

Figure 8-1. Traditional vs. Smart Contract

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

298

Example:

A traditional escrow contract for real estate requires lawyers, banks, and

intermediaries.

A smart contract can serve the same purpose with code: when the buyer transfers

funds, the seller’s NFT (representing ownership) is automatically released.

 How Smart Contracts Work (Under the Hood)

A smart contract is compiled into bytecode and deployed to the blockchain at a specific

address. Once on-chain, users and other contracts can call its public functions and

query its state.

Most smart contracts

• Are written in Solidity (Ethereum)

• Contain functions that perform logic

• Can store data in on-chain variables

• Can emit events to signal important activity

Example code (Solidity):

 1. // SPDX-License-Identifier: MIT

 2. pragma solidity ^0.8.0;

 3.

 4. contract SimpleStore {

 5. uint256 public value;

 6.

 7. function set(uint256 _value) public {

 8. value = _value;

 9. }

10.

11. function get() public view returns (uint256) {

12. return value;

13. }

14. }

This contract stores a single number. Any user can set it or retrieve it.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

299

That’s the fundamental power of a smart contract: public logic with persistent

storage, secured by cryptography.

 The Ethereum Virtual Machine (EVM)

The Ethereum Virtual Machine (EVM) is the environment in which smart contracts

run. Figure 8-2 depicts the execution stack of smart contracts within the EVM.

Every Ethereum node runs an EVM instance, which executes contract bytecode as

part of processing each block.

Key features of the EVM:

• Isolated from the outside world (no internet access, clock, or

file system)

• Executes smart contract functions securely and deterministically

• Uses gas to measure and limit resource usage

Technical Note Solidity, Vyper, and other smart contract languages compile into

EVM bytecode, not machine code.

this makes smart contracts portable across EVm-compatible blockchains (e.g.,

polygon, Avalanche, Optimism, and BnB Chain).

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

300

Figure 8-2. EVM Smart Contract Execution Stack

 Limitations and Design Constraints

Smart contracts offer powerful benefits, but they’re not general-purpose programs.

Developers must design within several constraints (Table 8-3).

Table 8-3. Design Constraints and Limitations of Smart Contracts

Constraint Description

No external calls Smart contracts can’t call web Apis directly (use oracles instead).

No randomness Contracts can’t generate secure random numbers on their own.

Gas costs Execution is paid for in gas, so efficiency matters.

Immutability Bugs can’t be fixed after deployment (upgrades are possible but complex).

These constraints encourage minimalist, security-focused design.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

301

 Real-World Examples of Simple Contracts

• ERC-20 Token

 A smart contract that defines a fungible token with balance tracking

and transfer logic.

• NFT Contract (ERC-721)

 A unique asset tracker that stores metadata and ownership.

• Escrow Contract

 Holds funds until both parties meet specific conditions.

• DAO Voting Contract

 Allows users to vote on proposals using governance tokens.

Figure 8-3 highlights common real-world use cases for smart contracts.

Figure 8-3. Popular Smart Contract Use Cases

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

302

 Why Smart Contracts Matter

Smart contracts are not just “backend logic,” they’re the foundation of

• Decentralized Finance (DeFi)

• Token economies

• Permissionless governance

• Cross-border asset transfers

• Web3 business models

They enable applications where trust is enforced by code, not by institutions.

 Smart Contract Architecture

Designing smart contracts goes far beyond simply writing functions in Solidity.

It requires thoughtful architectural choices around data modeling, interaction

surfaces, modularity, and gas efficiency.

A well-architected contract is:

• Secure

• Maintainable

• Efficient

• Composable

In this section, we explore the internal anatomy of smart contracts and how their

architecture affects usability, performance, and upgradability.

 On-Chain vs. Off-Chain Logic

One of the most important architectural decisions is determining which logic should

live on-chain versus what can safely exist off-chain. Table 8-4 illustrates which

components are typically implemented on-chain versus off-chain.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

303

Table 8-4. On-Chain vs. Off-Chain Logic

Component On-Chain Off-Chain

token balances, governance logic

Ui rendering, analytics, graphs

Access control, ownership tracking

Wallet integrations, frontend logic

Game state (e.g., scores, positions) Sometimes Often

The rule of thumb: only put logic on-chain when decentralization, integrity, or

transparency demands it.

Why?

• Gas costs make on-chain operations expensive.

• On-chain logic is immutable (hard to patch bugs).

• Blockchain storage is limited.

 Contract Interfaces and ABIs

In Ethereum and EVM-compatible blockchains, smart contracts expose public functions

and events via their Application Binary Interface (ABI).

The ABI is a compiled schema that allows tools like ethers.js or web3.js to

• Encode function calls (e.g., transfer(address,uint256))

• Decode return values

• Parse emitted events

This makes contracts interoperable, meaning other contracts or applications can

interact with them as long as the ABI is known.

Example ABI Fragment (ERC-20 Transfer):

 1. {

 2. "name": "transfer",

 3. "type": "function",

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

304

 4. "inputs": [

 5. { "name": "to", "type": "address" },

 6. { "name": "amount", "type": "uint256" }

 7.],

 8. "outputs": [{ "name": "", "type": "bool" }],

 9. "stateMutability": "nonpayable"

10. }

Developer Tip When integrating with third-party contracts (e.g., Uniswap, Aave),

you only need their ABi, not the source code.

 Storage and State Design

Smart contracts persist data on-chain, meaning all state variables are stored in the

blockchain’s state trie.

Common types of state:

• Scalars (uint256, bool, address)

• Mappings (mapping(address => uint256))

• Arrays and structs

Example:

1. mapping(address => uint256) public balances;

Gas efficiency is critical when designing storage layouts (Figure 8-4):

• Use smaller types (e.g., uint32 instead of uint256) when possible.

• Pack variables in the same storage slot to save gas.

• Minimize writes; storage writes are more expensive than reads.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

305

Figure 8-4. Solidity Storage Layout

 Modularity and Contract Composition

Larger projects split logic across multiple contracts using inheritance or delegation.

This promotes:

• Separation of concerns

• Code reuse

• Easier auditing and testing

 Inheritance

Solidity supports multiple inheritance. For example:

1. contract Ownable { /* ... */ }

2. contract Pausable { /* ... */ }

3.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

306

4. contract MyToken is Ownable, Pausable {

5. // Combines both access control and pause functionality

6. }

 Delegation (Proxy Pattern)

Delegation uses the delegatecall opcode to forward calls to an implementation contract.

Figure 8-5 shows the proxy pattern used for upgradeable smart contracts.

Used in:

• Upgradable contracts (OpenZeppelin Proxy)

• Modular systems like Diamond Standard (EIP-2535)

Figure 8-5. Proxy Pattern for Upgradable Contracts

 Events and Logs

Smart contracts can emit events, which are logged in transaction receipts.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

307

While these logs are not part of the contract state, they are extremely useful for:

• Frontend UIs (e.g., showing transfers)

• Indexers (The Graph, Covalent)

• Auditing and analytics

Example:

1. event Transfer(address indexed from, address indexed to, uint256

amount);

2.

3. function transfer(address to, uint256 amount) public {

4. balances[msg.sender] -= amount;

5. balances[to] += amount;

6. emit Transfer(msg.sender, to, amount);

7. }

 Reentrancy and Call Context

Smart contracts can call each other, which introduces risk.

Reentrancy happens when a contract sends funds to another contract, and that

contract calls back into the original before it finishes execution.

This can be exploited to drain funds.

Best Practice:

• Use checks-effects-interactions pattern:

 1. Check conditions

 2. Update state

 3. Interact with external contracts

Better:

• Use ReentrancyGuard from OpenZeppelin

1. modifier nonReentrant {

2. require(!_locked, "Reentrant call");

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

308

3. _locked = true;

4. _;

5. _locked = false;

6. }

 Composability and Interoperability

Smart contracts can call other contracts seamlessly, a concept called composability.

This enables

• dApps built on top of other protocols (e.g., Yearn on Curve + Aave)

• Flash loans and atomic operations across DeFi

• Cross-protocol strategies (e.g., arbitrage, staking + lending)

Risks of Composability:

• If a dependency fails (e.g., a lending pool), your dApp can break.

• Chain of reentrancy risks and gas exhaustion.

 Popular Use Cases for Smart Contracts

Smart contracts are not just a theoretical tool; they’ve been widely adopted in live, high-

value protocols that move billions of dollars daily.

Their programmability, transparency, and automation capabilities make them ideal

for powering complex systems where trust must be minimized or eliminated.

In this section, we’ll explore the most impactful use cases for smart contracts in

today’s blockchain ecosystems, from decentralized finance to gaming, identity, and

governance.

 Decentralized Finance (DeFi)

DeFi is arguably the most transformative application of smart contracts so far.

DeFi replaces traditional financial services with open-source protocols, enabling

• Lending and borrowing

• Trading

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

309

• Yield generation

• Stablecoins and synthetic assets

All of these are powered by smart contracts.

 1. Lending Protocols (e.g., Aave and Compound)

Users deposit tokens into a pool; borrowers provide collateral to

take loans.

All interest rates, liquidations, and repayments are enforced

automatically via smart contracts.

How It Works:

• User deposits 10 ETH into Aave.

• Aave’s smart contract issues interest-bearing aETH tokens.

• Borrowers deposit USDC as collateral to borrow ETH.

Smart Contract Concepts Illustrated:

• Collateral ratios

• Interest rate models

• Liquidation thresholds

• Governance upgrades (changing parameters)

 2. Automated Market Makers (e.g., Uniswap and Curve)

AMMs allow users to trade tokens directly through liquidity pools

without order books.

Uniswap’s smart contracts maintain a liquidity invariant (e.g., x *

y = k) and rebalance token reserves after each swap.

Example:

• User swaps 100 DAI for ETH.

• The pool adjusts prices automatically.

• Liquidity providers earn fees, all handled by code.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

310

Smart Contract Concepts Illustrated:

• Constant product formula

• Slippage protection

• Fee collection and distribution

 3. Yield Farming and Aggregators (e.g., Yearn Finance)

These contracts automate complex DeFi strategies:

• Move funds between protocols for best yield.

• Auto-compound rewards.

• Rebalance risk.

Yearn’s contracts interact with dozens of other protocols like Curve, Aave, and

Compound, all in a composable way.

Smart Contract Concepts Illustrated:

• Composability

• Modular vault logic

• Permissioned vs. permissionless execution

 Non-Fungible Tokens (NFTs)

NFTs are unique, verifiable digital assets on-chain, most commonly implemented via

smart contracts using the ERC-721 or ERC-1155 standards.

NFT smart contracts manage:

• Ownership

• Transfers

• Metadata links (image, audio, game asset)

• Royalties and secondary sales

Example:

A simple ERC-721 contract holds metadata for a piece of digital art.

When someone buys it, the smart contract updates ownership and emits a

Transfer event.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

311

 Marketplace Contracts (e.g., OpenSea and Blur)

Marketplace contracts enable buying, selling, and bidding on NFTs.

These smart contracts often include

• Escrow logic

• Royalty distribution

• Signature verification

Smart Contract Concepts Illustrated:

• approve() patterns for sales

• Event logs for frontend updates

• Payment splitting and royalties

 Decentralized Autonomous Organizations (DAOs)

DAOs use smart contracts to encode governance rules, enabling groups to make

decisions without centralized leadership.

Examples:

• MolochDAO: Uses smart contracts for membership and funding

proposals.

• ENS DAO: Controls domain name ownership policy on-chain.

• Gitcoin: Uses quadratic funding logic implemented in smart contracts.

DAO contracts handle:

• Voting (e.g., token-based and quadratic)

• Treasury disbursement

• Proposal creation and execution

Smart Contract Concepts Illustrated:

• Token-based voting

• Proposal lifecycle logic

• On-chain vs. off-chain governance bridges

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

312

 Escrow and Conditional Payments

Smart contracts are ideal for holding funds until conditions are met.

Example:

• A freelancer completes a job.

• The client submits funds to an escrow smart contract.

• When both parties agree, the contract releases the funds.

These use cases require

• Time locks

• Multi-signature approvals

• Dispute resolution logic (or oracles) – Oracles are external services

that feed real-world data (such as delivery confirmation or legal ruling

outcomes) into the blockchain, enabling smart contracts to resolve

disputes based on off-chain information.

 Identity and Reputation Systems

Projects like BrightID, Proof of Humanity, and Gitcoin Passport use smart contracts

to manage

• Human verification

• Unique identity claims

• Trust scores

Use cases:

• Preventing Sybil attacks

• Whitelisting verified users

• Limiting claimable rewards to one per person

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

313

Smart Contract Concepts Illustrated:

• Non-transferable tokens (soulbound tokens)

• Identity attestation

• Reputation-linked actions

 Gaming and Virtual Economies

Games like Axie Infinity, Decentraland, and Zed Run rely on smart contracts to:

• Manage in-game assets

• Enable trading

• Record achievements

• Handle payouts

In many cases, smart contracts are the game’s backend.

Smart Contract concepts illustrated:

• Tokenized game items (ERC-1155)

• Rental and upgrade logic

• Inter-game composability

 Supply Chain and Real-World Asset Tracking

Smart contracts can track the provenance and status of physical goods, as long as reliable

data is provided (via oracles or IoT devices).

Use cases:

• Tracking organic certifications

• Recording shipping milestones

• Authenticating luxury goods (e.g., NFTs for watches or handbags)

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

314

 The Smart Contract Lifecycle

Developing a smart contract is not a one-click operation; it’s a lifecycle involving

writing, compiling, deploying, verifying, interacting, and maintaining code that lives

permanently on a public blockchain.

Each phase requires different tools, mindsets, and best practices. Understanding this

lifecycle is essential not just for writing Solidity code but for designing systems that are

scalable, secure, and maintainable over time. Figure 8-6 visualizes the full lifecycle of a

smart contract, from drafting to maintenance.

Figure 8-6. Smart Contract Development Lifecycle

 Drafting the Contract Logic

Before writing a line of code, a developer should design

• What the contract should do

• Who can call each function

• What data needs to be stored

• What risks exist

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

315

This can be done in plain English or diagrammed as a flowchart or state machine.

Example (for a basic token):

• Owner can mint new tokens

• Users can transfer tokens

• Balances should be tracked

• Total supply should be capped

 Writing the Contract (Solidity)

Most smart contracts today are written in Solidity, a statically typed, object-oriented

language inspired by JavaScript and C++.

Example, ERC-20 token:

 1. // SPDX-License-Identifier: MIT

 2. pragma solidity ^0.8.0;

 3.

 4. contract MyToken {

 5. string public name = "MyToken";

 6. mapping(address => uint256) public balanceOf;

 7.

 8. function mint(uint256 amount) public {

 9. balanceOf[msg.sender] += amount;

10. }

11.

12. function transfer(address to, uint256 amount) public {

13. require(balanceOf[msg.sender] >= amount, "Insufficient

balance");

14. balanceOf[msg.sender] -= amount;

15. balanceOf[to] += amount;

16. }

17. }

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

316

 Compiling the Contract

Solidity source code must be compiled into EVM bytecode before deployment.

Tools used:

• Solc (Solidity compiler)

• Hardhat (npx hardhat compile)

• Foundry (forge build)

• Remix IDE (browser-based with auto-compilation)

The compiler produces:

• bytecode: to be deployed on-chain

• ABI: for interacting with the contract off-chain

Best Practice: Always compile with optimization enabled and clearly specify your

Solidity version range to avoid compatibility issues.

 Deploying the Contract

Contracts can be deployed to:

• A local blockchain (for testing)

• A public testnet (Goerli, Sepolia, Mumbai, etc.)

• A mainnet (Ethereum, Polygon, Arbitrum, etc.)

Tools for deployment:

• Hardhat scripts (JavaScript/TypeScript)

• Remix Deploy Plugin

• Foundry forge create

• Third-party tools like Thirdweb, Alchemy, and Infura Dashboards

Hardhat deployment script example:

1. async function main() {

2. const [deployer] = await ethers.getSigners();

3. const Token = await ethers.getContractFactory("MyToken");

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

317

4. const token = await Token.deploy();

5. console.log("Contract deployed to:", token.address);

6. }

7. main();

 Verifying the Contract

After deployment, it’s standard practice to verify your contract so others can read its

source code on block explorers like Etherscan, Polygonscan, or Blockscout.

Verification links your source code to the on-chain bytecode, enabling:

• Code transparency

• Public audits

• Easier debugging

Methods:

• Hardhat plugin (npx hardhat verify)

• Manually via Etherscan UI

• Foundry’s forge verify-contract

Why It Matters: Verified contracts are essential for gaining user trust, especially in

DeFi and NFT platforms.

 Interacting with the Contract

Once deployed, the contract becomes live and callable by:

• Wallets (e.g., MetaMask)

• dApps (via web3.js or ethers.js)

• Other smart contracts

Example (Using ethers.js):

1. const contract = new ethers.Contract(address, abi, signer);

2. await contract.mint(100);

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

318

Frontends usually use providers like Infura, Alchemy, or self-hosted nodes to send

these transactions.

 Monitoring and Maintaining

Although contracts are immutable, developers still need to:

• Monitor usage (transactions, logs, balances)

• Respond to exploits or bugs (via upgradeable patterns or migration)

• Push new versions (e.g., V2 contracts)

• Coordinate community decisions (especially in DAO contexts)

Monitoring Tools:

• Tenderly: transaction debugging, gas profiling

• Etherscan Watchlist

• Blocknative, Alchemy Notify, or custom bots

Maintenance Strategy: Use versioning contracts (e.g., TokenV1 and TokenV2) or

proxy upgradeability (OpenZeppelin UUPS) with caution; upgrades must be audited

and secure.

 Gas, Costs, and Efficiency

Smart contracts don’t run for free. Every operation executed on the Ethereum Virtual

Machine (EVM) requires gas, a unit of computational cost paid by the sender of a

transaction. This mechanism prevents abuse (like infinite loops) and ensures that nodes

are compensated for executing the contract’s logic.

Understanding gas is not just important for users; it’s essential for developers to

write contracts that are efficient, scalable, and affordable.

 What Is Gas?

Gas is the execution cost unit for smart contract operations in Ethereum and EVM-

compatible blockchains.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

319

Each operation (e.g., storing data, adding two numbers, calling another contract) has

a predefined gas cost in the Ethereum Yellow Paper.

Users pay for gas using the network’s native currency (e.g., ETH on Ethereum, MATIC

on Polygon).

Equation:

Total Fee = Gas Used × Gas Price

• Gas Used: Computational effort

• Gas Price: Set by the user (in gwei)

• Max Fee/Tip: Introduced in EIP-1559 for fee predictability

Figure 8-7 shows the components of Ethereum transaction fees.

Figure 8-7. Ethereum Transaction Fee Breakdown

 Why Gas Efficiency Matters

For Users:

• Lower gas = cheaper transactions

• High gas usage = fewer users can afford to interact

For Developers:

• Gas-efficient contracts are faster, cheaper, and more scalable

• Contracts with excessive gas costs may fail to execute if they exceed

the block gas limit

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

320

• Gas-efficient dApps gain a competitive advantage in DeFi and

NFT sectors

For Protocol Design:

• Enables batched transactions, flash loans, and

composable systems

• Reduces friction in governance, staking, and multi-step workflows

 Common Gas Costs for Operations

Table 8-5 shows approximate gas costs for typical EVM operations.

Table 8-5. Common Gas Costs for EVM Operations

Operation Estimated Gas Cost

Add two numbers (+) 3

Store to storage (sstore) 20,000 (first write)

read from storage (sload) 2,100

Emit event (log) 375 + 8 per byte

Calling another contract 700 + execution

transfer Eth 21,000

 Optimizing Contract Design for Gas Efficiency

 1. Minimize Storage Writes

Storage operations are the most expensive part of contract execution.

Tips:

• Avoid writing to storage more than once per variable.

• Use memory instead of storage for temporary variables inside functions.

• Use calldata for external function arguments (cheaper than memory).

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

321

 2. Use Smaller Data Types When Possible

Use uint8, uint16, or uint32 instead of uint256 when high ranges

aren’t needed.

Smaller types can pack into a single storage slot, saving gas.

1. struct Packed {

2. uint128 a;

3. uint128 b; // Both fit in 1 slot

4. }

 3. Pack Structs and Mappings Carefully

Poorly aligned variables result in unused storage space and higher

gas costs.

Tips:

• Order struct fields from largest to smallest types.

• don’t mix uint256 and bool unless necessary — each type affects

alignment.

 4. Avoid Redundant Checks or Repeated Computation

Move reusable logic to internal functions or store results in

temporary variables.

Example:

1. uint256 value = someMapping[msg.sender];

2. require(value > 10, "Too low");

3. doSomething(value); // Use cached result

 5. Use Events Instead of Storage for Logging

Events are cheaper than writing data to state and are indexed for

easy access.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

322

Use them for

• Logging transfers

• Audit trails

• Notifications

 Testing and Profiling Gas Usage

Use tools to measure gas before deployment.

 Tools for Gas Profiling

Developers can use the tools in Table 8-6 to profile and optimize gas usage.

Table 8-6. Tools for Gas Profiling

Tool Description

hardhat Gas reporter Outputs gas usage per function

Foundry's Forge test Shows gas usage alongside tests

tenderly Visual simulation and gas tracking

remix Gas Analyzer Built-in view of gas usage by line

 Gas Limits and Out-of-Gas Errors

Each block has a block gas limit (currently ~30 million gas on the Ethereum mainnet).

If a transaction exceeds this, it will fail and consume the gas anyway.

Implications:

• Large loops, deeply nested operations, or recursive calls may hit

gas limits.

• Batch operations (e.g., minting 100 NFTs) must be optimized or split

into multiple txs.

Design Rule: Avoid unbounded loops in smart contracts. Always ensure operations

are bounded by function input or data length.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

323

 Gas Optimization Tradeoffs

While writing efficient smart contracts is crucial for reducing transaction costs,

developers should be cautious about over-optimizing. Aggressive optimization

techniques can lead to reduced code readability, complex debugging, and even security

vulnerabilities. Table 8-7 highlights common optimization techniques and their

potential trade-offs, emphasizing the importance of balancing efficiency with safety and

maintainability.

Table 8-7. Trade-Offs in Gas Optimization Techniques

Optimization Potential Tradeoff

Bitwise hacks low readability

Storage packing Complex debugging

inline assembly hard to audit, prone to bugs

minimal checks Security risk

Use optimization only after your contract is working, secure, and well-tested.

 Implementation of Smart Contracts and dApps

 Development Tools Overview

Developing smart contracts isn’t just about writing Solidity code; it’s about having the

right tools to compile, deploy, test, debug, and maintain code safely and efficiently.

Over the years, the Ethereum developer ecosystem has matured with powerful

frameworks that handle:

• Project scaffolding and dependency management

• Compilation and deployment

• Local test blockchain environments

• Automated testing and gas reporting

• Contract verification and debugging

Let’s walk through the most commonly used frameworks and tools in the ecosystem.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

324

 Hardhat

Hardhat is one of the most popular JavaScript/TypeScript-based Ethereum development

frameworks.

It provides a complete toolbox for developing, testing, and deploying smart

contracts.

Key features

• Built-in local Ethereum node (Hardhat Network)

• Plugin system (for ethers.js, gas reporter, Etherscan verification, etc.)

• TypeScript and JavaScript support

• Console and scripting environment

Best for

• Web3 developers using JavaScript/TypeScript

• Teams building full-stack dApps

• Projects requiring deployment scripts and plugin integrations

Common commands

1. npx hardhat compile # Compile contracts

2. npx hardhat test # Run unit tests

3. npx hardhat node # Run a local Ethereum node

4. npx hardhat run scripts/deploy.js --network localhost

Integration Tip hardhat works seamlessly with ethers.js, making it ideal for

frontend–backend contract integrations.

Figure 8-8 illustrates the typical workflow when developing contracts with Hardhat.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

325

Figure 8-8. Hardhat Development Workflow

 Foundry

Foundry is a blazing-fast smart contract development toolkit written in Rust.

It has quickly become a favorite among advanced solidity developers and security

researchers.

Key features

• Native support for Solidity scripting (no JavaScript)

• Super-fast test runner (forge test)

• Built-in fuzzing and property-based testing

• Deployment with forge create

• Contract interaction with cast (CLI tool)

Best for

• Low-level contract developers

• Auditors, security engineers

• Speed-focused teams

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

326

Common commands

1. forge init # Scaffold new project

2. forge build # Compile contracts

3. forge test # Run tests + gas reporting

4. forge script ... # Deploy or simulate actions

5. cast call ... # Query live blockchain data

Security Bonus: Foundry has native support for fuzz testing, making it a great

choice for pre-audit hardening.

 Truffle

Truffle was one of the first major Ethereum dev frameworks, known for its integration

with Ganache (a personal Ethereum blockchain).

Though now less dominant, it remains widely used and supported.

Key features

• Simple contract compilation and migration

• Support for both web3.js and ethers.js

• Integration with Ganache for local testing

• Mocha test environment

Best for

• Legacy projects

• Educational and proof-of-concept dApps

• Developers already using Ganache or older web3 tooling

Common commands

1. truffle init

2. truffle compile

3. truffle migrate

4. truffle test

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

327

 Remix IDE

Remix is a browser-based Solidity IDE that allows developers to write, compile, test,

and deploy smart contracts without installing anything.

Key features

• Web-based and zero-install

• Solidity compiler and deployment GUI

• Static analysis and gas estimation

• Support for plugins (e.g., Slither and Etherscan verification)

• Deploy to MetaMask or injected Web3 provider

Best for

• Beginners learning Solidity

• Prototyping or testing one-off contracts

• Teaching environments and workshops

 Tool Comparison Table

Table 8-8 compares features of major development tools used for smart contract

projects.

Table 8-8. Workflow Recommendation by Project Type

Feature/Tool Hardhat Foundry Truffle Remix

language Support JS/tS Solidity JS Solidity

Speed medium Fast Slow medium

test Framework mocha native mocha manual

Built-in Blockchain Yes Yes Ganache no

Fuzzing plugin native

Best Use Case Full-stack apps Audits, r&d legacy/edu prototyping

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

328

 Plugin Ecosystem and Extensions

The best tools are extensible.

Hardhat and Foundry both support powerful plugins and custom scripts.

Hardhat Plugins

• @nomiclabs/hardhat-ethers

• hardhat-gas-reporter

• hardhat-etherscan

• hardhat-deploy

Foundry Add-Ons

• Integration with dapptools, slither, and forge coverage

• Easy cross-compatibility with Hardhat ABIs or deployments

 Workflow Recommendation by Use Case

Table 8-9 recommendeds tool stacks for different smart contract project types.

Table 8-9. Workflow Recommendation by Use Case

Project Type Recommended Stack

dApp with frontend hardhat + ethers.js

Security-focused protocol Foundry + Slither + Echidna

Beginner prototyping remix or truffle

teaching Solidity remix + Github pages

Gas-sensitive deFi app Foundry + hardhat fallback

 Writing Your First Contract (Line by Line)

Let’s now apply what we’ve learned by building a real smart contract from scratch.

This contract covers

• Reading and writing on-chain state

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

329

• Managing addresses

• Emitting events

• Basic access control (onlyOwner)

• Require statements and gas-saving patterns

 Contract Goals

Let’s define what the contract should do

• Allow users to vote “Yes” or “No” on a single question.

• Count how many voted “Yes” and “No.”

• Prevent double-voting.

• Only the contract owner can close voting.

• Store the result on-chain.

 Full Code (Solidity 0.8+)

 1. // SPDX-License-Identifier: MIT

 2. pragma solidity ^0.8.18;

 3.

 4. contract VoteBox {

 5. address public owner;

 6. bool public isVotingOpen = true;

 7.

 8. uint256 public yesVotes;

 9. uint256 public noVotes;

10.

11. mapping(address => bool) public hasVoted;

12.

13. event Voted(address voter, bool vote);

14. event VotingClosed(uint256 totalYes, uint256 totalNo);

15.

16. modifier onlyOwner() {

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

330

17. require(msg.sender == owner, "Not owner");

18. _;

19. }

20.

21. modifier votingOpen() {

22. require(isVotingOpen, "Voting is closed");

23. _;

24. }

25.

26. constructor() {

27. owner = msg.sender;

28. }

29.

30. function voteYes() external votingOpen {

31. require(!hasVoted[msg.sender], "Already voted");

32. hasVoted[msg.sender] = true;

33. yesVotes += 1;

34. emit Voted(msg.sender, true);

35. }

36.

37. function voteNo() external votingOpen {

38. require(!hasVoted[msg.sender], "Already voted");

39. hasVoted[msg.sender] = true;

40. noVotes += 1;

41. emit Voted(msg.sender, false);

42. }

43.

44. function closeVoting() external onlyOwner {

45. isVotingOpen = false;

46. emit VotingClosed(yesVotes, noVotes);

47. }

48. }

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

331

 Walkthrough by Section

 Pragma and License

1. // SPDX-License-Identifier: MIT

2. pragma solidity ^0.8.18;

• SPDX-License: Declares the contract’s open-source license.

• pragma: Sets the Solidity compiler version. Always use exact or fixed

ranges for security and compatibility.

 State Variables

1. address public owner;

2. bool public isVotingOpen = true;

3.

4. uint256 public yesVotes;

5. uint256 public noVotes;

6.

7. mapping(address => bool) public hasVoted;

• owner: Stores who deployed the contract (for access control).

• isVotingOpen: A toggle to allow/disallow votes.

• yesVotes, noVotes: Count user input.

• hasVoted: Tracks who has voted to prevent double voting.

Storage Reminder: Mappings are not iterable; we use them for lookup, not lists.

 Events

1. event Voted(address voter, bool vote);

2. event VotingClosed(uint256 totalYes, uint256 totalNo);

• Voted: Logs each vote (can be indexed and shown on frontends).

• VotingClosed: Useful for indexing and final state tracking.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

332

 Modifiers

1. modifier onlyOwner() {

2. require(msg.sender == owner, "Not owner");

3. _;

4. }

• Custom logic inserted before function logic.

• Common for access control, state checks, pausing, etc.

1. modifier votingOpen() {

2. require(isVotingOpen, "Voting is closed");

3. _;

4. }

• Ensures users can’t vote once voting is closed.

Gas Tip modifiers are just syntactic sugar; they don’t reduce gas, but they keep

code readable.

 Constructor

1. constructor() {

2. owner = msg.sender;

3. }

• Called once when deployed. Sets the deploying wallet as the owner.

 Vote Functions

1. function voteYes() external votingOpen {

2. require(!hasVoted[msg.sender], "Already voted");

3. hasVoted[msg.sender] = true;

4. yesVotes += 1;

5. emit Voted(msg.sender, true);

6. }

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

333

• Ensures only new voters can vote.

• Updates internal state and logs the event.

• Uses external for gas savings when no internal calls are expected.

Same for voteNo(), but sets noVotes i+= 1.

 Close Voting (Owner Only)

1. function closeVoting() external onlyOwner {

2. isVotingOpen = false;

3. emit VotingClosed(yesVotes, noVotes);

4. }

• Ensures only the owner can disable voting.

• Prevents new votes while preserving transparency via event logs.

 Testing Your Contract

You can test this contract in:

• Remix: Deploy and click vote buttons manually.

• Hardhat:

1. it("allows a user to vote once", async () => {

2. await contract.voteYes();

3. await expect(contract.voteYes()).to.be.revertedWith("Already

voted");

4. });

• Foundry:

1. function testVoteYes() public {

2. voteBox.voteYes();

3. assertEq(voteBox.yesVotes(), 1);

4. }

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

334

 Compiling and Deploying Your Contract

Once you’ve written and tested your smart contract, the next step is to compile it into

deployable bytecode and send it to the blockchain. This transforms your Solidity code

into an immutable, on-chain application, visible and usable by anyone in the world.

This section explains how to go from Solidity source to a live, deployed contract

using three different tools: Hardhat, Foundry, and Remix.

 Understanding the Compilation Process

Solidity code must be compiled into bytecode for the Ethereum Virtual Machine

(EVM). Figure 8-9 depicts the process of compiling Solidity source code into deployable

bytecode. During compilation, your tools generate:

• Bytecode: Low-level instructions the EVM understands

• ABI: Contract interface used by external apps (e.g., dApps, wallets)

• Metadata: Used for verification and debugging

Compiler Tip Use Solidity versions ^0.8.x unless you have specific legacy

requirements. Always lock compiler versions for reproducibility.

Figure 8-9. Solidity Compilation Process

 1. Deploying with Hardhat

Hardhat is one of the most widely adopted frameworks for full-

stack Ethereum development.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

335

Project setup

1. npm init -y

2. npm install --save-dev hardhat

3. npx hardhat

Choose “Create a basic sample project.” It scaffolds a working

folder with example contracts and scripts.

Compile the Contract

1. npx hardhat compile

Outputs compiled contracts in the artifacts/ directory.

Write a Deployment Script

Create scripts/deploy.js:

 1. async function main() {

 2. const [deployer] = await ethers.getSigners();

 3. const VoteBox = await ethers.getContractFactory("VoteBox");

 4. const voteBox = await VoteBox.deploy();

 5. await voteBox.deployed();

 6. console.log("VoteBox deployed to:", voteBox.address);

 7. }

 8. main().catch((error) => {

 9. console.error(error);

10. process.exitCode = 1;

11. });

Deploy Locally

Start a local testnet:

1. npx hardhat node

Then run:

1. npx hardhat run scripts/deploy.js --network localhost

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

336

You’ll get an address like:

VoteBox deployed to: 0x123...def

Deploy to Testnet (e.g., Sepolia)

 1. Set up .env file:

1. PRIVATE_KEY=your_wallet_private_key

2. INFURA_API_KEY=your_infura_key

 2. Configure hardhat.config.js:

1. sepolia: {

2. url: `https://sepolia.infura.io/v3/${INFURA_API_KEY}`,

3. accounts: [PRIVATE_KEY]

4. }

 3. Deploy to Sepolia:

1. npx hardhat run scripts/deploy.js --network sepolia

Testnet Tip Use faucets to get test Eth for Sepolia or Goerli.

 2. Deploying with Foundry

Foundry is CLI-first and super fast. Perfect for scripting

deployments in Solidity.

Install and init project

1. curl -L https://foundry.paradigm.xyz | bash

2. foundryup

3. forge init vote-box

4. cd vote-box

Place your VoteBox.sol file in the /src directory.

Compile

1. forge build

Outputs compiled files into /out and ABI into /out/VoteBox.sol/VoteBox.json.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

337

Deploy

Use the forge create command:

1. forge create --rpc-url https://sepolia.infura.io/v3/<API_KEY> \

2. --private-key <YOUR_PRIVATE_KEY> \

3. src/VoteBox.sol:VoteBox

You’ll get:

• Deployed contract address

• Transaction hash

Gas Tip Use --verify flag to auto-submit the source to Etherscan.

Verify on Etherscan (optional)

1. forge verify-contract <address> src/VoteBox.sol:VoteBox

<ETHERSCAN_API_KEY>

 3. Deploying with Remix

Remix is the fastest way to deploy for simple contracts or demos.

Open Remix IDE

• Go to remix.ethereum.org

• Paste or upload your contract into the editor

Compile Contract

• Go to the “Solidity Compiler” tab

• Select version (match your pragma)

• Click Compile VoteBox.sol

Deploy

• Go to “Deploy & Run Transactions” tab

• Choose environment:

• JavaScript VM: Temporary local chain (no real deployment)

• Injected Web3: Use MetaMask for testnet/mainnet

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

338

• Click Deploy

• Confirm transaction in MetaMask

You’ll get the address, and a full UI to test your contract directly.

Verifying and testing your deployment

After deployment:

• Try calling your functions (e.g., voteYes())

• Use Etherscan or Sepolia Explorer

• Submit your source for verification (for transparency)

Verified contracts:

• Show full code

• Enable UI interaction directly on block explorers

• Build trust with users and other devs

 Deployment Best Practices

Table 8-10 summarizes the key practices developers should follow when deploying smart

contracts to ensure security, transparency, and reliability.

Table 8-10. Deployment Best Practices

Practice Why It Matters

Use .env for secrets Avoid leaking keys in source control

Verify contracts makes your contract transparent and callable from explorers

Automate deployments Use scripts to avoid mistakes and enable reproducibility

Use constructor

parameters wisely

immutable values save gas vs. storage writes

deploy to testnet first Always dry-run deployments to test safety and correctness

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

339

 Testing and Security Best Practices

Writing and deploying a smart contract is just the beginning. Smart contracts are

immutable, public, and often control real assets, which means a single vulnerability

can lead to irreversible loss of funds or exploitable behavior.

This section focuses on:

• Proper testing techniques

• How to write good test cases

• Common vulnerabilities

• How to audit and secure your contracts

• Tools for automatic analysis and simulation

It teaches developers how to write robust and safe contracts that won’t break under

pressure or under attack.

 The Role of Testing in Smart Contract Development

Smart contract testing has two goals:

 1. Prove that the code behaves correctly

 2. Detect potential bugs, edge cases, or attack vectors

Unlike traditional applications, smart contracts:

• Cannot be patched post-deployment (unless upgradeable, and even

that has risks)

• Operate in hostile environments with economic incentives to

attack them

• Interact with other contracts that may behave unexpectedly

That’s why testing is non-negotiable in any Web3 project.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

340

 Types of Smart Contract Tests

Table 8-11 summarizes the different types of tests and the tools used for each.

Table 8-11. Testing Types and Tools for Smart Contracts

Test Type What It Covers Tools

Unit Tests Single-function correctness and expected

behavior

hardhat, Foundry

Integration interactions between functions and other

contracts

hardhat, Ganache,

Foundry

Property-Based

(Fuzz)

test invariants under randomized inputs Foundry, Echidna

Simulation/Fork

Testing

real-world mainnet behavior and edge cases tenderly, Anvil

Static Analysis detect known bug patterns in code Slither, mythX

 Writing Unit Tests with Hardhat

Hardhat uses Mocha/Chai for writing tests in JavaScript or TypeScript.

Example:

 1. describe("VoteBox", function () {

 2. it("should allow voting once", async function () {

 3. const [user] = await ethers.getSigners();

 4. const VoteBox = await ethers.getContractFactory("VoteBox");

 5. const contract = await VoteBox.deploy();

 6.

 7. await contract.connect(user).voteYes();

 8. await expect(contract.connect(user).voteYes()).to.be.

revertedWith("Already voted");

 9. });

10. });

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

341

 Writing Tests in Foundry

Foundry uses Solidity itself to write tests.

 1. contract VoteBoxTest is Test {

 2. VoteBox voteBox;

 3.

 4. function setUp() public {

 5. voteBox = new VoteBox();

 6. }

 7.

 8. function testVoteYes() public {

 9. voteBox.voteYes();

10. assertEq(voteBox.yesVotes(), 1);

11. }

12.

13. function testFailDoubleVote() public {

14. voteBox.voteYes();

15. voteBox.voteYes(); // Expected to fail

16. }

17. }

Test Prefixes:

• test... → Should pass

• testFail... → Should fail

• fuzz_... → Run with random inputs

 Fuzz Testing and Invariant Checks

Fuzzing randomly generates inputs to find edge-case bugs. Figure 8-10 demonstrates the

fuzz testing process for identifying edge-case bugs.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

342

Foundry example:

1. function testFuzzVote(uint256 choice) public {

2. vm.assume(choice == 0 || choice == 1);

3. if (choice == 0) voteBox.voteYes();

4. else voteBox.voteNo();

5. }

Invariant testing ensures a rule is always true, no matter what inputs or function

call order.

Example:

“Total votes = yesVotes + noVotes”

Figure 8-10. Fuzz Testing Flow

 Common Smart Contract Vulnerabilities

Table 8-12 highlights common vulnerabilities developers must address before deployment.

Table 8-12. Common Smart Contract Vulnerabilities

Vulnerability Description

Reentrancy Attacker calls back into contract before state is updated

Arithmetic Overflows uint256 variables exceed their max value (less common post-0.8)

Unprotected self-destruct Allows funds to be destroyed or redirected

Uninitialized Storage Pointers Can corrupt state

Timestamp Manipulation miners can manipulate block.timestamp

Gas Griefing Operations that force out-of-gas failures

Front-Running/MEV timing-sensitive logic like auctions or deFi positions

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

343

 Using Static Analysis Tools

Automated tools help detect known patterns and logic errors.

 Slither

Static analysis tool by Trail of Bits

• Detects reentrancy, uninitialized storage, dangerous modifiers

• Run with:

1. slither contracts/VoteBox.sol

 MythX

Cloud-based formal verification and vulnerability scanning

• Detects deep logic bugs

• Integrates with Remix or CI pipelines

 Foundry Coverage

Analyze which functions and branches were actually tested

• forge coverage

 Auditing Basics

Even small contracts should undergo manual review. Larger protocols should get

formal audits by professional firms (e.g., OpenZeppelin, Trail of Bits, Sigma Prime).

Checklist Before Deployment:

• All functions tested

• Public/external functions reviewed

• Fallback and receive functions restricted

• Modifiers + access control verified

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

344

• Slither reports addressed

• Stable storage layout (especially for upgradeable contracts)

 Real-World Testing Strategy

Table 8-13 outlines the recommended testing strategies for each stage of contract

development.

Table 8-13. Real-World Testing Strategy by Development Stage

Stage Tests to Run

local

development

Unit, gas, coverage

pre-testnet integration, fuzz

testnet Ui-connected testing, long-term monitoring

pre-mainnet Static analysis + peer review

post-deployment Simulations + alerting systems

 Integrating Smart Contracts into Decentralized
Applications (dApps)

Smart contracts don’t live in isolation; they power decentralized applications.

The frontend (React, Vue, Angular, etc.) connects users to the blockchain by:

• Displaying contract data

• Triggering transactions

• Listening for events

• Managing wallet connections

• Handling confirmations, errors, and state changes

This section explains how to bridge smart contracts and users, step-by-step, using

real code, tools like ethers.js, and industry-standard UX patterns.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

345

 dApp Architecture Overview

Most decentralized apps follow this general flow:

1. User → Wallet (e.g., MetaMask) → dApp Frontend → RPC Provider →

Smart Contract

Each component has its own job (Table 8-14):

Table 8-14. dApp Architecture Layers

Layer Role

Wallet Signs transactions, holds keys (e.g., metamask and WalletConnect)

Frontend Calls contract methods via JavaScript libraries

Provider relays requests to blockchain (e.g., infura and Alchemy)

Smart

Contract

Executes logic, stores state

 Connecting to Wallets

Wallets expose an Ethereum provider object to your app (commonly window.

ethereum).

To connect:

1. await window.ethereum.request({ method: 'eth_requestAccounts' });

You can also use ethers.js to wrap it:

1. import { ethers } from 'ethers';

2.

3. const provider = new ethers.providers.Web3Provider(window.ethereum);

4. const signer = provider.getSigner();

This signer can now send transactions, call contract methods, and query

blockchain data.

Best Practice: Handle network switching and account changes via event listeners:

1. window.ethereum.on('accountsChanged', handleAccountsChanged);

2. window.ethereum.on('chainChanged', () => window.location.reload());

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

346

 Using ethers.js to Call Contracts

You need two things:

• The contract address

• The ABI (Application Binary Interface)

1. const contract = new ethers.Contract(contractAddress, abi, signer);

 Calling View Functions (No Gas)

1. const yesCount = await contract.yesVotes();

 Sending Transactions (Costs Gas)

1. const tx = await contract.voteYes(); // Triggers MetaMask popup

2. await tx.wait(); // Wait for confirmation

 Displaying Events and Real-Time Feedback

Contracts emit events, which your frontend can subscribe to:

1. contract.on("Voted", (voter, vote) => {

2. console.log(`${voter} voted ${vote ? 'YES' : 'NO'}`);

3. });

Use Case: Update the UI in real time as new votes arrive, no need to refresh or poll.

 Handling Gas, Errors, and Confirmations

You should

• Show estimated gas fees

• Handle failed transactions gracefully

• Display status while waiting for confirmation

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

347

Example TX lifecycle handler:

1. try {

2. const tx = await contract.voteYes();

3. setStatus("Transaction sent. Waiting for confirmation...");

4. await tx.wait();

5. setStatus("Vote recorded!");

6. } catch (err) {

7. setStatus("Transaction failed: " + err.message);

8. }

User Experience Tip Always give users a progress status; otherwise, they’ll

assume something broke.

 Network Management and Testnets

Your contract may live on

• Local testnets (Hardhat and Anvil)

• Public testnets (Sepolia and Mumbai)

• Mainnet (Ethereum, Polygon, etc.)

Use window.ethereum.networkVersion or provider.getNetwork() to check

current chain.

Prompt for switching:

1. await window.ethereum.request({

2. method: 'wallet_switchEthereumChain',

3. params: [{ chainId: '0x1' }] // Ethereum Mainnet

4. });

Security Tip Always verify the chain before sending real funds.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

348

 Using Frontend Libraries and Frameworks

Popular tools:

• Web3Modal: wallet connection popups

• RainbowKit: UI + wallet integration

• wagmi: React hooks for Ethereum

• useDApp/EtherSWR: stateful contract queries

These frameworks simplify:

• Wallet state

• Gas fee management

• Contract interaction wrappers

 UI/UX Patterns for Web3

Table 8-15 lists essential UX patterns that improve usability and reliability in dApps.

Table 8-15. UI/UX Patterns for Web3 Applications

UX Element Why It Matters

“Connect Wallet” button First point of interaction

pending tX indicator reduces uncertainty

Gas cost preview Builds trust

Error toasts Show metamask or revert messages clearly

Event-driven updates real-time Ui = better experience

Anti-pattern to avoid: Don’t reload the page after a transaction; update the state

with events instead.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

349

 Conclusion

Smart contracts are not simply code; they are decentralized, self-enforcing agreements

that serve as the backbone of the modern Web3 ecosystem. From managing multi-billion-

dollar DeFi protocols to issuing NFTs, running DAOs, and powering on-chain games,

smart contracts have transformed the way applications are written, trusted, and deployed.

But raw contract code isn’t enough. Real impact comes when smart contracts are

paired with decentralized applications that expose intuitive UIs, allow wallet-based

interaction, and bridge users to the blockchain in a secure and seamless way.

This chapter has taken you through the full lifecycle, from understanding what smart

contracts are to writing them, testing them, deploying them, and integrating them into robust

applications. You’ve also seen the most important tools, patterns, and pitfalls along the way.

Armed with this knowledge, you’re no longer just reading about Web3. You’re ready

to build it.

 Chapter Summary

Section Key Takeaways

Smart Contracts

Basics

defined as immutable, deterministic code that enforces agreements without

intermediaries.

Architecture

and Design

Covers on-chain vs. off-chain logic, storage design, modular contracts, and proxy

patterns.

Use Cases includes deFi, nFts, dAOs, gaming, supply chain, and identity management.

Development

Lifecycle

drafting ➤ Coding ➤ Compiling ➤ deploying ➤ Verifying ➤ interacting ➤

monitoring.

Gas and

Efficiency

Gas determines cost; optimization techniques improve scalability and reduce

expenses.

Tools and

Frameworks

hardhat, Foundry, truffle, and remix enable building, testing, and deploying

contracts.

Testing and

Security

includes unit tests, fuzzing, vulnerability checks, audits, and real-world testing

strategies.

dApp

Integration

Explains how contracts integrate into frontends, wallets, providers, and full

applications.

ChAptEr 8 SmArt COntrACtS And dECEntrAlizEd AppliCAtiOnS

351
© Soumaya Erradi 2025
S. Erradi, Web3 Development with Angular, https://doi.org/10.1007/979-8-8688-1886-8_9

CHAPTER 9

Web Development
with Angular

 Introduction

Modern web applications demand more than beautiful interfaces. They need robust

architecture, predictable state management, excellent developer experience, and the

flexibility to grow. Angular provides a complete, opinionated framework for building

complex, maintainable web applications that scale gracefully from small sites to large

enterprise platforms.

Before diving into blockchain integrations, it’s essential to understand how to craft

a well-structured web application using the modern Angular ecosystem. This chapter

will walk you through the foundational concepts that make Angular a trusted choice

for high-performance web development, from components and services to routing,

state management, and performance strategies. Along the way, you’ll see how recent

advancements in Angular’s design philosophy, tooling, and reactivity models strengthen

your ability to build responsive, maintainable applications.

By mastering these principles now, you’ll be ready to extend your skills into the next

level: combining modern frontend architecture with decentralized technologies.

 Introduction to Angular

Angular is a robust, full-featured framework designed to build dynamic, maintainable,

and scalable web applications. Over the years, it has evolved significantly, earning its

place as a trusted choice for complex projects in industries ranging from finance to

healthcare, e-commerce, and government platforms.

https://doi.org/10.1007/979-8-8688-1886-8_9#DOI

352

 A Brief History

Angular’s journey began with its early predecessor, commonly known today as

AngularJS. Initially released in 2010, it introduced concepts that reshaped how

developers approached web interfaces: declarative templates, dependency injection,

and two-way data binding. However, as web standards advanced and application

requirements became more sophisticated, a complete architectural rethink was

necessary.

This need for modernization led to the creation of Angular as we know it today: a

framework built from the ground up with performance, modularity, and maintainability

in mind. Unlike its predecessor, this modern Angular was rewritten with TypeScript at

its core, enabling better tooling, strong typing, and a more predictable development

experience.

 From Rewrite to Reinvention

One of the most significant shifts was the separation of concerns through a component-

based architecture. Applications are now organized into cohesive, reusable building

blocks: components for UI logic and rendering, services for encapsulating shared

behavior, and modules for organizing related features.

This emphasis on modular design allows teams to scale projects with confidence,

sharing responsibilities across multiple developers while maintaining clear boundaries

between features.

Another cornerstone of Angular’s design is its commitment to declarative

programming: templates define what should appear, while the framework handles

the how behind updates and rendering. This philosophy reduces the manual

synchronization between state and DOM that plagues older JavaScript solutions.

 Core Design Principles

At its heart, Angular rests on three guiding principles:

 1. Modularity. Applications are composed of small, focused units

that can be reused, tested, and maintained independently.

Chapter 9 Web Development With angular

353

 2. Dependency Injection. A powerful built-in mechanism that

manages how classes and services depend on each other,

simplifying configuration and promoting testability.

 3. Type Safety and Tooling. The TypeScript-first approach

provides developers with static analysis, auto-completion, and

early detection of potential bugs, enhancing long-term project

maintainability.

Over time, Angular’s ecosystem has introduced various innovations that keep it

aligned with the changing demands of web development. Features like a new rendering

engine, streamlined build processes, advanced reactivity through signals, standalone

components, and zoneless change detection reflect its continued focus on performance,

developer productivity, and maintainability.

 Who Uses Angular Today?

Angular continues to be widely adopted by large enterprises and teams building

mission-critical applications. Its structure and opinionated approach make it especially

suitable for projects that benefit from clear conventions, long-term support, and robust

tooling.

Beyond the enterprise, a vibrant community contributes to its evolution through

open-source libraries, educational resources, and best practices. The framework’s rich

ecosystem includes UI libraries, state management solutions, and integrations with

modern development workflows, ensuring that developers have the tools they need to

deliver sophisticated user experiences.

 Staying Current

A hallmark of Angular’s sustainability is its commitment to a steady release cadence

and transparent roadmap. Developers benefit from predictable updates, progressive

enhancements, and a thriving community that supports continuous learning and innovation.

As this chapter unfolds, you’ll explore the foundational architecture, core

patterns, and modern capabilities that make Angular a reliable choice for building

sophisticated web applications and why it remains a strong candidate for powering

decentralized applications and integrating seamlessly with blockchain technology in the

chapters ahead.

Chapter 9 Web Development With angular

354

 Angular Architecture and Core Concepts

To build effective, scalable web applications with Angular, it is essential to understand

its core architecture and the fundamental building blocks that define how an application

is structured and how data flows through it. This section explores these concepts,

explaining how they work together to support clean design, maintainability, and robust

user interfaces.

 Components, Services, and Modules

Components are the heart of every Angular application. A component controls a patch

of the screen; it contains the template (the HTML to render) and the logic that supports

interaction with that template. By designing applications as collections of reusable

components, developers break down complex UIs into manageable pieces.

Services encapsulate shared logic that does not belong in a component’s view

or local state. Services handle tasks like retrieving data from an API, managing user

authentication, or storing shared application state. Angular’s dependency injection

system makes it easy to provide services wherever they’re needed, promoting reusability

and testability.

Modules, historically, have been Angular’s way of organizing related components,

services, and other features into cohesive units. While many modern applications now

use standalone components to reduce boilerplate and simplify project structure,

understanding both approaches remains valuable. Standalone components allow

developers to declare individual components without wrapping them in a module,

streamlining smaller applications or features while still supporting modular design

when needed.

Key Point: Whether using modules, standalone components, or a hybrid, the goal

remains the same: to keep the codebase organized, maintainable, and easy to reason

about as it grows.

 Routing and Navigation

Single-page applications rely on client-side routing to display different views without

reloading the page. Angular’s Router provides a flexible way to define application routes,

associate them with components, and manage navigation.

Chapter 9 Web Development With angular

355

Routes are typically defined in a configuration object that maps URL paths to the

components that should render for each path. The <router-outlet> directive acts as a

placeholder in the template where the matched component appears.

In larger applications, the router also supports advanced features like lazy loading,

which loads feature areas only when needed, improving initial load time and overall

performance.

 Change Detection

Angular’s change detection mechanism keeps the application’s view in sync with its

underlying data model. When data changes, Angular automatically updates the DOM to

reflect those changes.

Traditionally, Angular has relied on a mechanism known as Zone.js to track when

changes occur. However, modern approaches increasingly favor zoneless change

detection, where explicit signals track reactivity and developers can control when

updates propagate through the component tree. This fine-grained reactivity reduces

unnecessary work and can significantly improve performance in complex applications.

 Forms: Template-Driven vs. Reactive

Forms are central to most web applications. Angular offers two complementary

approaches for building forms:

• Template-driven forms use directives in the template to bind input

elements to model data. They are straightforward and suitable for

simple forms with minimal logic.

• Reactive forms use explicit form control objects in the component’s

TypeScript code to model the form’s structure and validation rules.

This approach provides greater control, making it ideal for dynamic,

complex forms with robust validation requirements.

Both approaches leverage Angular’s binding system and validators to ensure user

input is collected, verified, and processed efficiently.

Chapter 9 Web Development With angular

356

 Directives and Pipes

Directives and pipes extend templates with dynamic behavior and transformations.

Directives come in two forms:

• Attribute directives modify the appearance or behavior of an existing

element (e.g., changing styles or listening for events).

• Structural directives change the structure of the DOM by adding or

removing elements. Examples include conditional rendering and

iteration.

Modern Angular introduces a more expressive control flow syntax for structural

directives, offering a clearer, more maintainable way to handle common patterns like if

conditions and loops.

Pipes transform displayed data within templates. Common uses include formatting

dates and currencies or filtering lists. Pipes keep templates declarative and concise.

 Component Lifecycle Hooks

Angular provides a set of lifecycle hooks that let developers tap into key moments in a

component’s life, from creation through rendering to destruction. These hooks allow for

initialization logic, responding to input changes, subscribing to streams, and performing

cleanup.

Examples include

• ngOnInit: runs after the component’s data-bound properties are initialized.

• ngOnChanges: responds when input properties change.

• ngOnDestroy: handles teardown tasks like unsubscribing from

observables.

 Putting It All Together

The interplay of components, services, routing, forms, directives, and lifecycle hooks

shapes how an Angular application works. Together, these core concepts create a clear

separation of concerns, encourage reuse, and make applications easier to test and

maintain. Figure 9-1 illustrates the layered architecture of a modern Angular application.

Chapter 9 Web Development With angular

357

Figure 9-1. Angular Application Architecture

 Angular CLI and Project Setup

A robust framework is only as good as its tooling. Angular’s command-line interface

(CLI) is an integral part of its ecosystem, designed to streamline every stage of

development, from project scaffolding to building, testing, and deployment.

Understanding how to set up a project and navigate its structure lays the groundwork

for building reliable, maintainable applications.

 Installing the Angular CLI

The Angular CLI is installed globally using a Node package manager. Once installed,

it provides a suite of commands to generate code, manage dependencies, run a local

development server, and optimize builds.

1. npm install -g @angular/cli

Chapter 9 Web Development With angular

358

After installation, the version can be verified to ensure the development

environment is correctly set up:

1. ng version

 Creating a New Project

A new project is initialized with the ng new command. The CLI prompts developers to

make choices such as

• Whether to include routing for client-side navigation.

• Which stylesheet format to use (CSS, SCSS, etc.).

• Whether to generate the project structure using standalone

components or traditional modules.

For example:

1. ng new my-app

This command creates a ready-to-run application with all dependencies configured.

The project can be served locally with:

1. cd my-app

2. ng serve

By default, the application runs on http://localhost:4200/, providing instant

feedback for any changes made during development.

 Project Structure

A typical Angular project follows a clear and predictable folder structure. At the root,

several key files define how the project behaves:

• angular.json: The workspace configuration file that manages build

options, project targets, and assets.

• package.json: Lists project dependencies, scripts, and metadata.

Chapter 9 Web Development With angular

359

• package-lock.json: Automatically generated file that locks the

dependency tree to specific versions, ensuring consistent installs

across environments.

• tsconfig.json: Configures TypeScript options for compilation.

• src/: The source folder, containing the application code, assets,

and styles.

Inside src/, the core files include

• main.ts: The entry point of the application, which bootstraps the root

component.

• index.html: The single HTML page that hosts the app.

• styles.*: Global stylesheets.

• app/: The root folder for components, services, and feature modules

or standalone components.

Note many modern applications favor standalone components as the default.

this approach reduces boilerplate and allows developers to bootstrap applications

directly from a single root component without wrapping it in a module.

 Standalone vs. Module-Based Structure

In a standalone structure, the main.ts file typically bootstraps the application using a

direct call to bootstrapApplication, specifying the root component and any providers:

1. import { bootstrapApplication } from '@angular/platform-browser';

2. import { AppComponent } from './app/app.component';

3.

4. bootstrapApplication(AppComponent);

Chapter 9 Web Development With angular

360

For module-based setups, an AppModule would first be defined and then

bootstrapped instead:

1. import { platformBrowserDynamic } from '@angular/platform-browser-

dynamic';

2. import { AppModule } from './app/app.module';

3.

4. platformBrowserDynamic().bootstrapModule(AppModule);

Both structures are fully supported. Choosing between them depends on team

preferences and project requirements.

 Environmental Management

Angular projects often require different configurations for development, staging, and

production environments. Environment files (environment.ts) provide a clean way to

define variables specific to each context.

The build system automatically replaces these files during compilation, ensuring

that sensitive production settings, like API endpoints and feature flags, remain isolated

from development values.

Common naming conventions for environment files include:

• Environment.ts: Default development environment

• Environment.prod.ts: Production environment

• environment.staging.ts: Staging or pre-production environment

 Modern Build System

Angular’s build process has steadily improved to provide faster development servers and

optimized production bundles. Modern projects benefit from high-performance build

tools that leverage technologies like esbuild and Vite under the hood, delivering rapid

rebuilds, hot module replacement (HMR), and smaller output bundles.

These optimizations result in quicker feedback during development and faster page

loads for end users in production.

Chapter 9 Web Development With angular

361

 Extending the Project with Schematics

Beyond project creation, the CLI supports schematics, which are templates for

generating code snippets like components, directives, services, or entire features. This

reduces repetitive boilerplate and enforces consistent conventions across teams.

For example, to generate a new component:

1. ng generate component dashboard

This command creates the component’s TypeScript, template, stylesheet and test

files, updating any necessary declarations automatically.

 Putting It into Practice

A well-structured project setup, supported by clear configuration and a powerful CLI,

forms the backbone of a maintainable Angular application. Understanding how to

navigate this setup ensures that developers can spend more time solving business

problems and less time wrestling with configuration.

Practical Tip Consider adding linters, formatting tools, or monorepo support

early in a project’s lifecycle. integrating these tools through the Cli ensures

consistent quality and productivity as the codebase grows.

A solid foundation starts here. With the project structure in place, the next step is

learning how to handle application state effectively, balancing local reactivity and shared

state for modern single-page applications.

 State Management in Angular

State management is at the heart of every dynamic web application. It determines how

user interactions, API responses, and component updates are handled and kept in sync.

Poor state handling can lead to unpredictable bugs, inconsistent data, and performance

bottlenecks, so it is vital to adopt patterns that match your application’s scale and

complexity.

Chapter 9 Web Development With angular

362

 Why State Management Matters

In a single-page application, state can come from various sources:

• Local Component State: Data that belongs to a single component,

such as form input or a toggle.

• Shared Application State: Data that multiple components depend

on, such as user authentication status, theme preferences, or cached

API results.

Managing this flow of data cleanly ensures that views stay in sync with logic and that

changes propagate predictably throughout the application.

 Local State with Components

For many use cases, local state is sufficient. This might include form inputs, UI toggles, or

temporary data only relevant to a single component. Local state is often handled using

standard class properties, template bindings, and built-in lifecycle hooks.

For example, a simple toggle for showing or hiding a section:

1. export class ExampleComponent {

2. showDetails = false;

3.

4. toggleDetails() {

5. this.showDetails = !this.showDetails;

6. }

7. }

The template reacts automatically:

1. <button (click)="toggleDetails()">Toggle Details</button>

2.

3. @if (showDetails) {

4. <div>

5. Additional content here.

6. </div>

7. }

Chapter 9 Web Development With angular

363

 Reactive State with RxJS

When dealing with asynchronous data (e.g., data fetched from an API), Angular

developers commonly use RxJS, a library for reactive programming with observables.

Observables allow components and services to emit streams of data that other parts

of the application can subscribe to and react to in real time.

A simple service using RxJS:

 1. import { Injectable } from '@angular/core';

 2. import { HttpClient } from '@angular/common/http';

 3. import { BehaviorSubject } from 'rxjs';

 4.

 5. @Injectable({ providedIn: 'root' })

 6. export class UserService {

 7. private userSubject = new BehaviorSubject<User | null>(null);

 8. user$ = this.userSubject.asObservable();

 9.

10. constructor(private http: HttpClient) {}

11.

12. loadUser() {

13. this.http.get<User>('/api/user').subscribe(user => this.

userSubject.next(user));

14. }

15. }

A component can subscribe to this observable using the async pipe:

1. @if (userService.user$ | async as user) {

2. <div>

3. Welcome, {{ user.name }}!

4. </div>

5. }

This pattern keeps components declarative and reactive without manual

subscription management in most cases.

Chapter 9 Web Development With angular

364

 Global State with Store Patterns

As applications grow larger, developers often adopt centralized state management

patterns. These patterns help coordinate state shared across multiple areas of the

application in a predictable and testable way.

One popular approach is the Redux-inspired Store pattern, commonly

implemented with libraries that integrate naturally with Angular. The store acts as a

single source of truth for the application state. Actions are dispatched to update state,

and selectors allow components to read specific pieces of that state.

A centralized store is especially useful for

• Applications with complex workflows

• Features that require undo/redo

• Scenarios where multiple parts of the UI depend on the same data

While powerful, store patterns can introduce additional boilerplate. For smaller or

medium applications, simpler state management may be more practical.

 Fine-Grained Reactivity with Signals

Modern Angular applications can take advantage of signals, a primitive for fine-

grained reactivity. Signals provide a simple, declarative way to manage local state that

automatically triggers updates when the underlying value changes.

A signal example:

 1. import { signal } from '@angular/core';

 2.

 3. export class CounterComponent {

 4. count = signal(0);

 5.

 6. increment() {

 7. this.count.update(v => v + 1);

 8. }

 9. }

Chapter 9 Web Development With angular

365

In the template:

1. <button (click)="increment()">Increment</button>

2. <p>Count: {{ count() }}</p>

Signals reduce the need for manual subscriptions and can be combined with

observables and other reactive patterns for more advanced scenarios.

 When to Avoid Overengineering

Not every project needs a heavy state management solution. For simple or medium-

sized applications, well-organized local state and reactive services are often enough.

Overly complex stores can add unnecessary overhead, slow onboarding for new

developers, and increase maintenance costs.

A practical rule:

• Use local component state for isolated features.

• Use services and observables for shared or asynchronous data.

• Introduce a store pattern only when the complexity of data flow and

interactions justifies it.

 Putting It into Practice

Choosing the right state management strategy is not about selecting a single tool but

about combining multiple patterns that complement each other. A well-designed

application uses local state, services, reactive streams, and modern primitives like

signals together to balance simplicity and power. As shown in Figure 9-2, Angular offers

multiple approaches for handling application state.

Chapter 9 Web Development With angular

366

Figure 9-2. Comparing State Management Approaches in Angular

By understanding and applying these patterns wisely, developers can ensure their

Angular applications remain predictable, responsive, and maintainable as they grow.

 Working with HTTP and APIs

Modern web applications rarely operate in isolation. They interact constantly with

remote servers, third-party services, and real-time data streams. Angular provides

powerful tools and patterns for handling HTTP requests and managing external data in a

clean, testable way.

 The HttpClient

At the core of Angular’s networking capabilities is the HttpClient. It offers a streamlined

API for making HTTP calls and handling request headers, query parameters, and

response types with ease.

To enable HTTP communication, the relevant provider is added to the application’s

configuration. In projects using standalone components, this is typically done during

bootstrap:

Chapter 9 Web Development With angular

367

1. import { provideHttpClient } from '@angular/common/http';

2. import { bootstrapApplication } from '@angular/platform-browser';

3. import { AppComponent } from './app/app.component';

4.

5. bootstrapApplication(AppComponent, {

6. providers: [provideHttpClient()]

7. });

Once configured, the HttpClient can be injected into services or components to send

requests.

 Creating a Service for API Calls

A best practice in Angular is to isolate data-fetching logic in dedicated services. This

keeps components focused on presentation and interaction while services handle

communication with external systems.

A simple example:

 1. import { Injectable } from '@angular/core';

 2. import { HttpClient } from '@angular/common/http';

 3. import { Observable } from 'rxjs';

 4.

 5. export interface Post {

 6. id: number;

 7. title: string;

 8. body: string;

 9. }

10.

11. @Injectable({ providedIn: 'root' })

12. export class ApiService {

13. constructor(private http: HttpClient) {}

14.

15. getPosts(): Observable<Post[]> {

16. return this.http.get<Post[]>('https://jsonplaceholder.typicode.com/

posts');

17. }

18. }

Chapter 9 Web Development With angular

368

By exposing an observable, this service allows consuming components to subscribe

reactively and handle data as it arrives.

 Consuming Data in a Component

A component uses the service by subscribing to its method or by binding the observable

directly in the template with the async pipe:

 1. import { Component, OnInit } from '@angular/core';

 2. import { ApiService, Post } from './api.service';

 3.

 4. @Component({

 5. selector: 'app-posts',

 6. templateUrl: './posts.component.html'

 7. })

 8. export class PostsComponent implements OnInit {

 9. posts$ = this.apiService.getPosts();

10.

11. constructor(private apiService: ApiService) {}

12.

13. ngOnInit(): void {}

14. }

Template:

1.

2. @for (post of posts$ | async) {

3.

4. {{ post.title }}

5.

6. }

7.

This pattern ensures the UI stays reactive without manual subscriptions or

unsubscriptions.

Chapter 9 Web Development With angular

369

 Handling Errors and Retries

Robust applications anticipate network failures. Using RxJS operators, developers can

handle errors, retry requests, or cancel them cleanly.

Example with catchError and retry:

 1. import { catchError, retry } from 'rxjs/operators';

 2. import { throwError } from 'rxjs';

 3.

 4. getPosts(): Observable<Post[]> {

 5. return this.http.get<Post[]>('https://jsonplaceholder.typicode.com/

posts').pipe(

 6. retry(2), // Retry up to 2 times before failing

 7. catchError(error => {

 8. console.error('Request failed', error);

 9. return throwError(() => new Error('Something went wrong'));

10. })

11.);

12. }

 Working with REST and GraphQL APIs

Angular’s HttpClient works naturally with RESTful APIs, supporting all HTTP verbs –

GET, POST, PUT, PATCH, and DELETE – and custom headers.

For GraphQL, a common practice is to use dedicated client libraries. These libraries

integrate with Angular services to send queries and mutations, cache responses, and

manage updates efficiently.

Example: Using a GraphQL client in a service to query data could follow the same

pattern, keeping the GraphQL logic in the service and exposing observables to the

component.

 Real-Time Data with WebSockets

For applications that require real-time updates, such as chat apps, dashboards, or live

feeds, Angular can integrate with WebSockets or Server-Sent Events (SSE).

Chapter 9 Web Development With angular

370

WebSocket connections can be managed inside a service using RxJS subjects or

observables to push new data to subscribers:

 1. import { Injectable } from '@angular/core';

 2. import { webSocket, WebSocketSubject } from 'rxjs/webSocket';

 3.

 4. @Injectable({ providedIn: 'root' })

 5. export class LiveUpdatesService {

 6. private socket$: WebSocketSubject<any> = webSocket('ws://example.com/

socket');

 7.

 8. getMessages() {

 9. return this.socket$;

10. }

11.

12. sendMessage(msg: any) {

13. this.socket$.next(msg);

14. }

15. }

This service streams live data to components in real time, keeping the user interface

reactive and up-to-date.

 Example: API Service with Pagination

In a real-world scenario, a service might fetch paginated results from an API. Here’s a

simplified version:

1. getPaginatedPosts(page: number, limit: number): Observable<Post[]> {

2. return this.http.get<Post[]>(

3. ̀https://jsonplaceholder.typicode.com/posts?_page=${page}

&_limit=${limit}`

4.);

5. }

A component can expose the current page state and update it with user interaction,

fetching new data when needed.

Chapter 9 Web Development With angular

371

 Putting It into Practice

By separating API logic into services, using observables to handle asynchronous flows,

and taking advantage of built-in tools for error handling and real-time communication,

Angular developers build applications that stay responsive and resilient under changing

conditions.

Practical Example: Try building a simple dashboard that loads a list of items

from a public API, shows a loading state, handles errors gracefully, and supports basic

pagination.

With data retrieval in place, the next step is ensuring that applications look polished

and provide a great user experience, often using reusable UI components and design

systems.

 Building Reusable UI with Angular Material

A professional user interface is more than just a collection of HTML elements; it’s

a system of consistent, accessible, and reusable components. To help developers

deliver polished, production-ready UIs efficiently, Angular provides integration with

Angular Material, a comprehensive component library based on Google’s Material

Design system.

 What Is Angular Material?

Angular Material offers a wide range of prebuilt UI components (buttons, form fields,

navigation elements, tables, dialogs, and more), all following modern design guidelines

and built to integrate seamlessly into Angular applications.

The library emphasizes accessibility, responsiveness, and theming out of the box,

allowing teams to maintain visual consistency across their applications while focusing

on business logic rather than low-level UI implementation.

In addition to the main components, the Component Dev Kit (CDK) provides

low-level building blocks for creating custom behaviors, like overlays, drag-and-drop,

and virtual scrolling.

Chapter 9 Web Development With angular

372

 Adding Angular Material to a Project

Angular Material is installed via the CLI, which helps developers configure themes,

typography, and animations automatically:

1. ng add @angular/material

The CLI prompts for theme choices and sets up global styles and animations

modules, ensuring the project is ready to use Material components immediately.

 Theming and Customization

A key strength of Angular Material is its theming system. Developers can define custom

color palettes, typography, and design tokens to match brand guidelines.

A typical theme uses primary, accent, and warn palettes, plus background and

surface colors. Themes can be extended with custom design tokens for finer control.

Example: setting up a custom theme using SCSS:

 1. @use '@angular/material' as mat;

 2.

 3. $my-primary: mat.define-palette(mat.$indigo-palette);

 4. $my-accent: mat.define-palette(mat.$pink-palette, A200, A100, A400);

 5. $my-theme: mat.define-light-theme((

 6. color: (

 7. primary: $my-primary,

 8. accent: $my-accent,

 9.)

10.));

11.

12. @include mat.all-component-themes($my-theme);

This approach ensures a consistent look while allowing full control over branding.

 Commonly Used Components

Angular Material provides ready-made solutions for many everyday UI needs. Some

typical examples include:

Chapter 9 Web Development With angular

373

• Navigation Toolbar: Provides headers, side navigation, and menus.

• Form Controls: Includes text fields, checkboxes, radio buttons, and

sliders with built-in validation states.

• Data Tables: Offer sorting, pagination, and filtering for large

data sets.

• Dialogs and Overlays: Support modal dialogs and popups for user

interactions.

• Snackbars and Toasts: Display brief notifications.

Example: A simple form field with validation:

 1. <mat-form-field appearance="fill">

 2. <mat-label>Email</mat-label>

 3. <input matInput placeholder="example@example.com"

[formControl]="emailControl">

 4.

 5. @if (emailControl.hasError('email')) {

 6. <mat-error>

 7. Please enter a valid email address

 8. </mat-error>

 9. }

10. </mat-form-field>

The mat-form-field component wraps the input, label, and error state, providing a

consistent style and behavior.

 Creating Custom Components with the CDK

Sometimes, applications require custom UI elements not covered by the core library.

The Angular CDK helps developers build these elements by providing reusable

behaviors.

For example:

• Overlay: Create floating panels like tooltips or custom dropdowns.

Chapter 9 Web Development With angular

374

• Drag and Drop: Add reorderable lists or draggable items.

• Portal: Dynamically render templates or components in different

parts of the DOM.

By combining the CDK’s low-level tools with Angular’s component architecture,

developers can create reusable custom UI elements while maintaining consistency with

the rest of the application.

 Combining Components into a Layout

A typical Angular Material application uses multiple components together to build a

cohesive layout.

Example: A basic app shell with a toolbar, side navigation, and content area:

 1. <mat-sidenav-container class="example-container">

 2. <mat-sidenav mode="side" opened>

 3. <p>Navigation Links</p>

 4. </mat-sidenav>

 5.

 6. <mat-sidenav-content>

 7. <mat-toolbar color="primary">

 8. My Application

 9. </mat-toolbar>

10. <div class="content">

11. <!-- Routed views render here -->

12. <router-outlet></router-outlet>

13. </div>

14. </mat-sidenav-content>

15. </mat-sidenav-container>

The layout ensures that navigation, headers, and content work together responsively.

Chapter 9 Web Development With angular

375

 Putting It into Practice

By combining Angular Material’s prebuilt components with custom elements built

using the CDK, teams can deliver UIs that are beautiful, accessible, and maintainable.

The theming system makes it easy to adapt the look and feel to match any brand, while

reusable patterns speed up development. Figure 9-3 demonstrates how Angular Material

provides ready-to-use components for building cohesive interfaces.

Figure 9-3. Angular Material UI Components for Consistent Design

With the UI in place, the next step is handling navigation, route security, and

performance optimizations through routing, guards, and lazy loading.

 Routing, Guards, and Lazy Loading

Routing is a fundamental part of building a single-page application (SPA) with Angular.

It determines how users navigate between different views without reloading the entire

page, how data is fetched before navigation occurs, and how developers optimize

application performance by loading only what’s needed, when it’s needed.

Chapter 9 Web Development With angular

376

 Angular Router Fundamentals

The Angular Router is a powerful module that maps URL paths to specific components.

This allows users to navigate through an application’s different features while staying on

the same page.

A simple route configuration maps a URL path to a component:

1. import { Routes } from '@angular/router';

2.

3. export const routes: Routes = [

4. { path: '', component: HomeComponent },

5. { path: 'about', component: AboutComponent },

6. { path: '**', component: NotFoundComponent }

7.];

The ** wildcard matches any unmatched paths, helping handle 404 scenarios.

In the root template, the <router-outlet> directive marks where the routed

component should render:

1. <nav>

2. Home

3. About

4. </nav>

5.

6. <router-outlet></router-outlet>

Links use routerLink to enable client-side navigation without a page reload.

 Nested Routes and Route Parameters

Applications often require nested routes or dynamic segments. Child routes allow

developers to define sub-sections within a parent view. For example, an admin section

might have routes for users, settings, and logs:

1. {

2. path: 'admin',

3. component: AdminComponent,

4. children: [

Chapter 9 Web Development With angular

377

5. { path: 'users', component: UserListComponent },

6. { path: 'settings', component: SettingsComponent }

7.]

8. }

Dynamic segments use :param syntax to capture variable values:

1. { path: 'post/:id', component: PostDetailComponent }

A component can then access route parameters to fetch specific data:

1. constructor(private route: ActivatedRoute) {}

2.

3. ngOnInit() {

4. const id = this.route.snapshot.paramMap.get('id');

5. // Use id to fetch post details

6. }

 Route Guards

Route guards protect routes by controlling whether navigation can proceed. They can

check permissions, prompt users to save changes, or pre-fetch data.

Common guard interfaces include:

• CanActivate: decides if a route can be activated.

• CanDeactivate: checks if it’s safe to leave a route.

• Resolve: fetches data before the route loads.

Example CanActivate guard:

 1. import { Injectable } from '@angular/core';

 2. import { CanActivate, Router } from '@angular/router';

 3.

 4. @Injectable({ providedIn: 'root' })

 5. export class AuthGuard implements CanActivate {

 6. constructor(private router: Router) {}

 7.

 8. canActivate(): boolean {

Chapter 9 Web Development With angular

378

 9. const isAuthenticated = /* check user authentication */;

10. if (!isAuthenticated) {

11. this.router.navigate(['/login']);

12. return false;

13. }

14. return true;

15. }

16. }

The guard is applied in the route config:

1. { path: 'admin', component: AdminComponent, canActivate: [AuthGuard] }

 Lazy Loading

One of the key performance strategies in Angular is lazy loading, the practice of splitting

the application into feature areas that load only when the user needs them. This reduces

the initial bundle size and speeds up the time to first meaningful paint.

To lazy load a feature area, the router configuration uses the loadChildren property:

1. {

2. path: 'admin',

3. loadChildren: () => import('./admin/admin.routes').then(m => m.routes)

4. }

In this setup, the admin section and its child routes load only when a user navigates

to /admin.

Lazy loading is especially useful for large applications with many independent

sections.

 Advanced Routing Features

Modern routing configurations can handle additional concerns:

• Preloading Strategies: Load some feature areas in the background to

balance performance and responsiveness.

• Scroll Position Restoration: Control whether the scroll position

resets or restores when navigating back and forth.

Chapter 9 Web Development With angular

379

• Custom Route Reuse Strategies: Configure Angular to precisely

manage component reuse during route transitions.

These features ensure that navigation feels fast, intuitive, and smooth for the user.

 Putting It into Practice

A secure admin panel is a common scenario that demonstrates routing, guards, and lazy

loading in action:

• Routes for admin features are defined in a separate module or

standalone route file.

• Access is protected with a guard that verifies user roles.

• The admin section is lazy loaded to keep the main bundle lightweight

for public users.

Practical Tip For public-facing applications, lazy loading rarely accessed areas

(like analytics dashboards, settings panels, or admin tools) helps keep the core

experience fast and responsive.

Angular’s router provides the tools needed to create seamless navigation

experiences, protect routes, and optimize performance through code splitting.

Combined with good state management and a polished UI, routing ties together the

structure of a modern, robust application.

 Testing Angular Applications

Testing is an essential part of any serious web development workflow. Well-tested

applications are more reliable, easier to maintain, and simpler to extend as requirements

evolve. Angular’s tooling and conventions make testing a first-class citizen, providing

robust support for unit tests, integration tests, and end-to-end (E2E) tests.

Chapter 9 Web Development With angular

380

 Why Test?

Testing ensures that

• Features work as intended.

• Future changes don’t introduce unexpected bugs.

• Code is easier to refactor with confidence.

• Edge cases and failure conditions are handled gracefully.

A thoughtful testing strategy balances different levels of tests: small and fast unit

tests, meaningful integration tests, and a few high-level E2E tests that simulate real user

behavior.

 Unit Testing Components and Services

Unit tests validate the smallest pieces of code in isolation. In Angular, unit tests

typically cover:

• Components and their bindings

• Services and their business logic

• Pipes, directives, and utility functions

Angular applications commonly use testing utilities like TestBed to create test

modules that replicate the real runtime environment.

Example: Testing a simple service.

 1. import { TestBed } from '@angular/core/testing';

 2. import { AuthService } from './auth.service';

 3.

 4. describe('AuthService', () => {

 5. let service: AuthService;

 6.

 7. beforeEach(() => {

 8. TestBed.configureTestingModule({});

 9. service = TestBed.inject(AuthService);

10. });

11.

Chapter 9 Web Development With angular

381

12. it('should be created', () => {

13. expect(service).toBeTruthy();

14. });

15.

16. it('should authenticate a user', () => {

17. const result = service.login('user', 'password');

18. expect(result).toBeTrue();

19. });

20. });

Note the toBeTrue() assertion checks that the value is strictly the boolean true,

while toBeTruthy() passes for any truthy value (not just true) in angular tests using

testbed.

 Testing Components with TestBed

Components often depend on templates, bindings, inputs, and outputs. TestBed helps

create an isolated testing module where a component can be rendered and interacted

with as if it were part of a real application.

Example: Testing a simple counter component.

 1. import { ComponentFixture, TestBed } from '@angular/core/testing';

 2. import { CounterComponent } from './counter.component';

 3. import { By } from '@angular/platform-browser';

 4.

 5. describe('CounterComponent', () => {

 6. let fixture: ComponentFixture<CounterComponent>;

 7. let component: CounterComponent;

 8.

 9. beforeEach(() => {

10. TestBed.configureTestingModule({

11. declarations: [CounterComponent]

12. });

13.

Chapter 9 Web Development With angular

382

14. fixture = TestBed.createComponent(CounterComponent);

15. component = fixture.componentInstance;

16. fixture.detectChanges();

17. });

18.

19. it('should increment count when button clicked', () => {

20. const button = fixture.debugElement.query(By.css('button'));

21. button.triggerEventHandler('click');

22. fixture.detectChanges();

23. expect(component.count).toBe(1);

24. });

25. });

 Modern Test Runners

Angular projects typically use Jasmine and Karma for unit tests. However, modern teams

often choose faster alternatives like Jest or Vitest, which run tests outside the browser

and provide simpler configuration, faster feedback loops, and improved developer

experience.

Switching to a modern test runner can reduce flakiness and speed up development.

 Mocking HTTP Requests

Services that make HTTP calls are tested by mocking backend responses. Angular

provides the HttpTestingController to intercept requests in unit tests and verify that

expected calls are made.

Example:

 1. import { TestBed } from '@angular/core/testing';

 2. import { HttpClientTestingModule, HttpTestingController } from

'@angular/common/http/testing';

 3. import { ApiService } from './api.service';

 4.

 5. describe('ApiService', () => {

 6. let service: ApiService;

 7. let httpMock: HttpTestingController;

Chapter 9 Web Development With angular

383

 8.

 9. beforeEach(() => {

10. TestBed.configureTestingModule({

11. imports: [HttpClientTestingModule],

12. providers: [ApiService]

13. });

14.

15. service = TestBed.inject(ApiService);

16. httpMock = TestBed.inject(HttpTestingController);

17. });

18.

19. it('should fetch posts', () => {

20. const mockPosts = [{ id: 1, title: 'Post' }];

21. service.getPosts().subscribe(posts => {

22. expect(posts).toEqual(mockPosts);

23. });

24.

25. const req = httpMock.expectOne('https://jsonplaceholder.typicode.

com/posts');

26. expect(req.request.method).toBe('GET');

27. req.flush(mockPosts);

28. });

29.

30. afterEach(() => {

31. httpMock.verify();

32. });

33. });

 End-to-End (E2E) Testing

E2E tests simulate real user interactions. They verify that multiple parts of the

application work together correctly, covering routing, forms, state changes, and backend

integration.

Modern Angular projects use tools like Playwright or Cypress for E2E testing. These

tools control a real browser, interact with elements, and assert outcomes as a user would.

Chapter 9 Web Development With angular

384

Example: A simple E2E test using Cypress.

 1. describe('Login Flow', () => {

 2. it('should allow a user to log in', () => {

 3. cy.visit('/login');

 4. cy.get('input[name="username"]').type('testuser');

 5. cy.get('input[name="password"]').type('password123');

 6. cy.get('button[type="submit"]').click();

 7. cy.url().should('include', '/dashboard');

 8. });

 9. });

 A Balanced Testing Strategy

A healthy angular project balances:

• Unit Tests: Fast, plentiful, covering small units of logic.

• Integration Tests: Ensure components and services work together as

expected.

• E2E Tests: A few key flows that catch critical breakages and verify the

user experience.

A common approach is the testing pyramid, which emphasizes writing many unit

tests, fewer integration tests, and a small set of E2E scenarios. Figure 9-4 depicts the

recommended Angular testing pyramid, highlighting the balance of unit, integration,

and end-to-end tests.

Chapter 9 Web Development With angular

385

Figure 9-4. Angular Testing Pyramid Showing Unit, Integration, and E2E Layers

With testing in place, developers can maintain high confidence in their work,

refactor freely, and deliver robust features, all while catching bugs early, before they

reach users.

 Performance Optimization

Performance is a critical measure of user experience. Even the most feature-rich

applications risk losing users if pages load slowly, interactions lag, or resources are

wasted. Angular equips developers with powerful techniques to build applications that

are efficient, responsive, and maintainable at scale.

Chapter 9 Web Development With angular

386

 Tree-Shaking and Ahead-of-Time (AOT) Compilation

Angular’s build system optimizes production bundles by eliminating unused code, a

process called tree-shaking. This reduces bundle size, delivering only the JavaScript that

the application actually uses.

Ahead-of-Time (AOT) compilation transforms Angular templates and components

into highly efficient JavaScript during the build process, rather than at runtime. This

results in faster rendering, smaller payloads, and fewer framework-related computations

in the browser.

 Change Detection Strategies

Angular’s change detection system automatically checks for updates when data

changes. While powerful, it can be costly if not configured carefully, especially in large

applications with many bindings.

By default, Angular checks every component when any event occurs. Developers

can optimize this by using the OnPush change detection strategy, which tells Angular to

update a component only when its inputs change.

Example: Using OnPush in a component:

 1. import { ChangeDetectionStrategy, Component } from '@angular/core';

 2.

 3. @Component({

 4. selector: 'app-card',

 5. templateUrl: './card.component.html',

 6. changeDetection: ChangeDetectionStrategy.OnPush

 7. })

 8. export class CardComponent {

 9. // Component logic here

10. }

Using OnPush encourages the use of immutable data patterns, which makes the

application’s data flow more predictable and efficient.

Chapter 9 Web Development With angular

387

 Fine-Grained Reactivity and Zoneless Change Detection

Modern Angular projects often adopt fine-grained reactivity through signals. Signals let

developers explicitly track when data changes and which parts of the UI depend on it.

This minimizes unnecessary checks and updates.

Alongside signals, developers can opt for zoneless change detection, removing the

traditional reliance on automatic patching of asynchronous operations. Instead, updates

are triggered directly through signals or explicit calls, giving full control over when and

how the UI refreshes.

This approach reduces overhead, leading to faster runtime performance in large or

highly interactive applications.

 Component-Level Optimizations

Small improvements add up. Practical techniques at the component level include:

• Using trackBy with @for to prevent unnecessary DOM re-renders

when iterating over lists.

1. @for (item of items; track trackById) {

2. {{ item.name }}

3. }

1. trackById(index: number, item: Item) {

2. return item.id;

3. }

• Detaching or manually reattaching change detectors for parts of the

UI that update infrequently.

• Breaking down large components into smaller, focused ones to

reduce rendering work.

 Lazy Loading and Route-Level Code Splitting

Large applications benefit greatly from splitting the application into multiple bundles

that load only when needed. Angular’s router supports lazy loading, which loads feature

areas on demand rather than bundling them all into the initial download.

Chapter 9 Web Development With angular

388

This reduces the amount of JavaScript the browser has to parse and execute up front,

improving time to first paint and user-perceived performance.

 Server-Side Rendering (SSR) and Hydration

Server-side rendering generates HTML on the server and sends it to the client fully

formed, enabling content to appear quickly. The browser then “hydrates” this static

markup into an interactive application.

Modern Angular supports incremental hydration, which hydrates only the parts

of the page that require interactivity, deferring non-critical scripts until needed. This

results in faster load times and a smoother user experience, especially on slower

networks or devices.

 Putting It into Practice

Optimizing performance is not about a single trick but about thoughtful choices at

every level:

• Build smaller bundles with tree-shaking and AOT.

• Use efficient change detection strategies and signals.

• Optimize rendering with trackBy, smart component design, and lazy

loading.

• Consider SSR and hydration for faster initial loads.

Practical Tip use performance auditing tools like lighthouse and angular’s

profiling tools to spot slow change detection cycles, large bundles, or unoptimized

templates early in development.

A performant application respects the user’s time and device capabilities, whether

they’re on a fast desktop or a limited mobile connection. With careful architecture,

Angular developers can deliver consistently fast, reliable experiences.

Chapter 9 Web Development With angular

389

 Angular in the Real World

Building robust applications requires more than knowing syntax and patterns; it

demands practices that scale well in production, support large teams, and adapt to

future requirements. This section explores how Angular fits into real-world projects,

why it remains a trusted choice for demanding environments and how to prepare

applications for modern needs, including future integration with decentralized

technologies.

 Angular vs. Other Frontend Approaches

In the broader landscape of web frameworks, Angular is often compared with libraries

like React or Vue.

Unlike libraries that focus on the view layer alone, Angular provides an integrated

solution for routing, forms, HTTP communication, state management patterns, and

more. This full-framework approach reduces the need for piecing together disparate

tools and ensures that teams follow proven architectural guidelines.

In recent years, innovations like fine-grained reactivity, standalone components,

and flexible rendering modes have modernized Angular’s core to stay competitive while

preserving its strengths.

The trade-off is that Angular can feel more opinionated and heavier upfront than a

lightweight library, but for large, long-lived applications, its structure often saves time

and effort in the long run.

 Best Practices from Large Projects

Angular’s flexibility makes it adaptable to projects of all sizes. For complex applications,

some proven best practices include:

• Modular Design: Break large features into self-contained areas,

whether through traditional modules or standalone components.

This keeps the application maintainable and testable.

• Monorepo Setups: Tools like Nx help manage large Angular projects

with multiple apps or libraries in a single workspace, improving

consistency and code sharing.

Chapter 9 Web Development With angular

390

• Consistent Coding Standards: Use linters, formatters, and

strict TypeScript configurations to enforce quality and catch

problems early.

• Micro-frontend Strategies: For organizations with multiple

teams delivering parts of the same product, splitting a large app

into independently developed, deployable pieces can help scale

development.

 Preparing for Modern Integrations

Well-structured Angular applications are well suited to integrate with modern trends,

such as decentralized technologies or blockchain networks. Many best practices that

apply to traditional apps (like clear state management, modular design, and reactive

data handling) make it easier to layer in Web3 libraries and connect to smart contracts or

decentralized APIs.

For example:

• State Management Patterns support handling wallet connections or

blockchain events.

• Reactive Services keep UIs in sync with real-time data from

distributed networks.

• Secure Routing and Guards help control access to features that

depend on user authentication or blockchain account verification.

A solid architectural foundation makes it easier to extend an app into new domains

without major rewrites.

 Case Study: Evolving an Enterprise Dashboard

Imagine a company that starts with a traditional analytics dashboard built with Angular,

displaying reports and charts for internal teams. As business needs grow:

• They refactor the dashboard into clearly separated feature areas

using standalone components.

Chapter 9 Web Development With angular

391

• They optimize load performance with server-side rendering and

incremental hydration.

• They scale the app’s state handling with reactive services and

selective store patterns.

• They later integrate a decentralized data source (e.g., pulling

blockchain-based audit trails) without rewriting the core

architecture.

Such an evolution highlights why good architectural decisions and modern Angular

features pay dividends over time.

 Putting It All Together

Angular remains a reliable foundation for real-world web applications. Its strong

ecosystem, solid conventions, and continual evolution make it an excellent choice for

teams who value maintainability, productivity, and long-term support.

When built on clear principles and current best practices, an Angular application is

ready to meet the challenges of modern web development, including the integration of

emerging technologies.

Practical Example: Explore a complete demo app that combines routing, reusable

UI components, lazy loading, state management, and API integration. Then adapt

its structure for future decentralized features (e.g., connecting a wallet or displaying

blockchain data) using the same clean architecture.

With this knowledge, developers can confidently move forward to build advanced

applications that combine Angular’s strengths with innovative domains, such as

decentralized applications and smart contract integrations.

 Conclusion

Angular remains a leading choice for building dynamic and large-scale applications

thanks to its strong architectural foundations, reactive programming model, and

continuous improvements in performance and developer experience.

Chapter 9 Web Development With angular

392

By mastering Angular’s component-based architecture, routing, testing practices,

and advanced optimizations introduced in Angular 20, developers can create

applications that are not only efficient but also ready to integrate decentralized

technologies.

In the next chapter, we’ll build on these fundamentals to explore how Angular can

be combined with blockchain and Web3 concepts to develop decentralized applications

(dApps) with secure, scalable frontends.

 Chapter Summary

Section Key Takeaways

Introduction to

Angular

overview of angular’s ecosystem, modular design, and evolution to

angular 20.

Core Building Blocks understanding modules, components, services, directives, and dependency

injection.

Reactive

Programming

Signals, observables, and state management in angular applications.

Server-Side

Rendering (SSR)

benefits of SSr and hydration, incremental rendering for performance.

Routing and Lifecycle

Hooks

navigation flows and component lifecycle for robust app design.

Testing in Angular unit, integration, and e2e testing best practices.

Performance

Optimization

techniques and tools to enhance app responsiveness and scalability.

Chapter 9 Web Development With angular

393
© Soumaya Erradi 2025
S. Erradi, Web3 Development with Angular, https://doi.org/10.1007/979-8-8688-1886-8_10

CHAPTER 10

Web3 Development
with Angular

 Introduction

The web is evolving from centralized servers and trusted intermediaries toward

decentralized systems that empower users to own their data, assets, and identities.

Decentralized applications connect familiar frontend interfaces to blockchains and

smart contracts, shifting trust from corporations to transparent, self-executing code.

In this chapter, you’ll learn how to extend your Angular knowledge to build real-

world dApps. You’ll see how to connect a modern frontend to blockchain networks,

integrate secure wallet interactions, interact with smart contracts, and manage

blockchain state reactively. Each section builds on the same principles you’ve already

mastered: modular design, clear separation of concerns, reactive patterns, and secure

best practices.

By the end of this chapter, you’ll not only understand how to build a functional dApp

but also how to approach the unique challenges of decentralization, ensuring your

applications are secure, resilient, and ready for the next era of the web.

 Introduction to Decentralized Applications (dApps)

In recent years, the rise of decentralized technologies has transformed how applications

are built, deployed, and used. At the heart of this shift is the decentralized application,

or dApp, an application that combines familiar web interfaces with blockchain-based

backends to enable trustless, transparent, and user-empowered interactions.

https://doi.org/10.1007/979-8-8688-1886-8_10#DOI

394

 What Defines a dApp?

A decentralized application looks similar to any other modern web application on the

surface. Users interact through a web interface, perform actions, and see data rendered

in the browser. The key difference lies in where critical logic and data storage reside.

Unlike traditional apps, which rely on centralized servers to handle data and

business logic, dApps offload critical operations to a blockchain network. Smart

contracts (self-executing pieces of code deployed to the blockchain) handle core

functions like token transfers, voting, digital asset management, or ownership

verification. Once deployed, these contracts operate autonomously, enforcing rules

exactly as written without requiring a centralized authority to maintain or execute them.

This design makes dApps:

• Trustless: Users interact directly with the blockchain; no central

party can arbitrarily alter rules.

• Transparent: Smart contracts are typically open source, allowing

anyone to audit the code and see how decisions are made.

• Immutable: Once deployed, smart contract logic cannot be changed

easily, which protects data integrity and rules enforcement.

• Censorship-Resistant: Applications remain accessible as long as the

underlying blockchain network is active.

 The Role of the Frontend

The blockchain alone is not user-friendly. Smart contracts expose programmatic

functions, but interacting directly with raw contract calls is impractical for most people.

This is where the web frontend comes in: it acts as a familiar bridge between users and

the decentralized backend.

A well-designed dApp frontend handles

• Displaying data read from the blockchain

• Helping users connect a wallet securely

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

395

• Preparing and sending transactions to smart contracts

• Providing clear feedback: transaction progress, confirmations,

or errors

• Reacting to on-chain events and updating the UI in real time

 Typical dApp Architecture

Most dApps follow a three-layer pattern (Figure 10-1):

 1. Smart Contracts: Deployed to a blockchain network (e.g.,

Ethereum). They contain the core rules and store critical state.

 2. Blockchain Node or RPC Provider: Connects the frontend to the

blockchain network, allowing the app to read chain data and send

signed transactions.

 3. Frontend Application: A web app (often built with Angular, React,

or similar frameworks) that uses libraries like ethers.js or web3.js

to interact with the blockchain through the provider.

The wallet sits between the frontend and the blockchain, managing the user’s

private keys. When a transaction is created in the frontend, the wallet signs it securely

before sending it to the network.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

396

Figure 10-1. Typical dApp Architecture

 Why Use Angular for dApps?

Modern dApps require the same solid design principles as any other sophisticated

web application: component-based architecture, modular design, strong reactivity,

predictable state management, and reliable routing. These are all strengths that Angular

provides natively.

By building the frontend with Angular,

• Teams can leverage clear patterns for state handling, forms, and

validation.

• The structure supports larger, maintainable projects.

• Reactive patterns help manage real-time data updates from

blockchain events.

• Robust tooling simplifies testing and debugging interactions with

decentralized systems.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

397

 What Comes Next

This section sets the foundation for the practical integration to follow. In the next

sections, you’ll see how to

• Connect your Angular application securely to blockchain networks.

• Manage wallet connections and signing.

• Interact with smart contracts by reading and writing data.

• Handle events, feedback, and errors in a user-friendly way.

Together, these practices extend your Angular skills into the emerging world of

decentralized web applications.

 Connecting Angular with Blockchain Networks

 Setting Up the Development Environment

Before you build a real-world dApp with Angular, it helps to set up a local blockchain

development environment. This gives you a safe playground to test smart contracts and

simulate transactions without spending real tokens.

 Required Tools and Versions

To follow along, you’ll need

• Node.js (LTS version recommended)

• npm or yarn for package management

• Angular CLI for scaffolding and building your frontend:

1. npm install -g @angular/cli

• Hardhat for writing, compiling, and deploying smart contracts:

1. npm install --save-dev hardhat

Hardhat provides a local blockchain node for fast testing and debugging. It’s also

widely used for deploying to public testnets like Sepolia or Polygon Mumbai.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

398

 Creating the Project Structure

A practical setup might look like this:

1. my-dapp/

2. ├── angular-app/ # Your Angular frontend

3. ├── smart-contracts/ # Hardhat project for Solidity contracts

4. ├── README.md

Inside smart-contracts/:

1. npx hardhat

Choose Create a basic sample project. Hardhat will scaffold:

• contracts/ folder with a sample contract.

• scripts/ for deploy scripts.

• hardhat.config.js.

 Running a Local Blockchain

Start a local Hardhat node to simulate a blockchain:

1. npx hardhat node

This runs on http://localhost:8545 by default and provides test accounts with private

keys and balances.

 Compiling and Deploying

Compile your contracts:

1. npx hardhat compile

Deploy them to your local network:

1. npx hardhat run scripts/deploy.js --network localhost

The output gives you the deployed contract address; you’ll paste this into your

Angular service to interact with the contract.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

399

 Connecting the Angular App

Your Angular service uses the local RPC URL:

1. const provider = new ethers.JsonRpcProvider('http://localhost:8545');

For production, switch this to a testnet provider (e.g., Infura or Alchemy).

 Using a Wallet

For local development, you can import one of the private keys from the Hardhat output

into MetaMask. This lets your frontend sign transactions on the local blockchain exactly

like it would on a testnet or mainnet.

With this environment ready, you can now write, deploy, and interact with

real smart contracts directly from your Angular application, all without spending

real tokens.

A decentralized application relies on a reliable connection to a blockchain network

to read on-chain data and submit transactions. Unlike traditional APIs, which rely on a

centralized server, dApps use blockchain nodes, often accessed through RPC (Remote

Procedure Call) providers, to interact with distributed ledgers securely.

 Understanding Blockchain RPC Providers

A blockchain network, like Ethereum or Polygon, is made up of thousands of nodes that

maintain consensus and store the blockchain’s state. To read data or send transactions, a

dApp must communicate with one of these nodes through a provider.

Public RPC providers and infrastructure services, such as Infura, Alchemy, or

QuickNode, offer reliable access to the blockchain without requiring every dApp to

run its own node. These providers expose standard APIs that frontend applications

can call to

• Query the latest blockchain data.

• Broadcast signed transactions.

• Subscribe to blockchain events, like new blocks or emitted

contract logs.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

400

 Using Libraries for Blockchain Access

In an Angular context, developers typically use JavaScript libraries like ethers.js or web3.

js to handle blockchain communication. These libraries simplify tasks such as

• Connecting to a node via RPC.

• Building transactions.

• Reading smart contract ABIs.

• Managing unit conversions (e.g., from Ether to Wei).

Example: Setting up an ethers provider.

 1. import { Injectable } from '@angular/core';

 2. import { ethers } from 'ethers';

 3.

 4. @Injectable({ providedIn: 'root' })

 5. export class BlockchainService {

 6. provider: ethers.JsonRpcProvider;

 7.

 8. constructor() {

 9. this.provider = new ethers.JsonRpcProvider('https://mainnet.infura.

io/v3/YOUR_PROJECT_ID');

10. }

11.

12. async getBlockNumber(): Promise<number> {

13. return await this.provider.getBlockNumber();

14. }

15. }

This service connects the Angular app to the blockchain and exposes methods for

reading data.

 Managing Provider Connections in Angular Services

A good practice is to encapsulate blockchain logic in Angular services, separating it from

UI components. This makes the application more testable, maintainable, and secure.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

401

A provider service might handle

• Establishing the RPC connection

• Switching networks if the user chooses a different chain

• Handling fallback providers for redundancy

• Exposing observables or signals to keep the UI reactive when new

data arrives

For example:

 1. import { signal } from '@angular/core';

 2.

 3. export class BlockchainService {

 4. provider = new ethers.JsonRpcProvider('https://...');

 5. blockNumber = signal<number | null>(null);
 6.

 7. constructor() {

 8. this.watchBlockNumber();

 9. }

10.

11. watchBlockNumber() {

12. this.provider.on('block', (blockNumber) => {

13. this.blockNumber.set(blockNumber);

14. });

15. }

16. }

This keeps the latest block number up-to-date in real time, so components can react

automatically.

 Network Switching and Fallbacks

Users may connect with wallets that support multiple blockchains. Modern dApps often

detect the active network and adjust their RPC provider dynamically to match.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

402

A well-designed provider service:

• Detects which network the user’s wallet is connected to.

• Switches RPC endpoints automatically.

• Provides fallback nodes in case the primary RPC fails.

This prevents disruptions and keeps the user experience smooth, even when

networks are congested or a provider is unavailable.

 Security Considerations

The provider only reads or broadcasts signed transactions; it does not store private

keys. Signing is handled by the user’s wallet, an essential security feature that prevents

the dApp from managing sensitive credentials directly.

Always ensure that:

• RPC endpoints are reliable and reputable.

• Sensitive operations are signed in the wallet, not the frontend.

• User data is never mixed with server-side state unnecessarily.

 Putting It into Practice

A robust provider service is the backbone of any dApp’s frontend. By organizing provider

logic in Angular services, developers keep components focused on presentation and

interaction, while the backend connection remains secure and modular.

Practical Tip Start with a single network and provider. As your application

grows, add support for multiple chains, fallback nodes, and automatic network

detection for wallets.

Next, you’ll see how to add wallet integration to your Angular app, connecting the

user’s identity to the blockchain securely and interactively.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

403

 Managing Wallet Integration

A decentralized application’s most important connection point is the wallet, the user’s

secure key manager that controls access to blockchain accounts and signs transactions.

Integrating wallet functionality into an Angular application bridges the gap between the

user’s identity and the decentralized network.

 What Is a Wallet?

A blockchain wallet is more than a place to store tokens. It securely manages private keys

that prove ownership of an address and signs transactions to authorize changes on the

blockchain.

Popular wallets include

• Browser extensions (e.g., MetaMask and Phantom)

• Hardware wallets (e.g., Ledger and Trezor)

• Mobile wallets (e.g., Trust Wallet and Rainbow)

These wallets connect to the browser or app through standardized APIs, allowing

users to interact with smart contracts and dApps securely.

 Connecting to a Wallet in an Angular App

A typical dApp needs to

 1. Detect whether a wallet is available.

 2. Request permission to connect.

 3. Read the connected account’s address.

 4. Use the wallet to sign transactions or messages.

This is usually handled in a dedicated Angular wallet service that interacts with

window.ethereum (for MetaMask and similar wallets) or a wallet SDK.

Example: Simple wallet connection service.

 1. import { Injectable } from '@angular/core';

 2.

 3. declare global {

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

404

 4. interface Window {

 5. ethereum?: any;

 6. }

 7. }

 8.

 9. @Injectable({ providedIn: 'root' })

10. export class WalletService {

11. account: string | null = null;
12.

13. async connectWallet(): Promise<void> {

14. if (window.ethereum) {

15. const accounts = await window.ethereum.request({ method: 'eth_

requestAccounts' });

16. this.account = accounts[0];

17. } else {

18. throw new Error('No wallet found');

19. }

20. }

21. }

 Handling Wallet State Reactively

Because wallet state can change at any time (e.g., when a user switches accounts or

networks), a robust integration must react to these changes.

Modern Angular applications often use signals or observables to update the UI

automatically.

Example with a signal:

 1. import { signal } from '@angular/core';

 2.

 3. export class WalletService {

 4. account = signal<string | null>(null);
 5.

 6. async connectWallet(): Promise<void> {

 7. if (window.ethereum) {

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

405

 8. const accounts = await window.ethereum.request({ method: 'eth_

requestAccounts' });

 9. this.account.set(accounts[0]);

10. }

11. }

12.

13. constructor() {

14. this.watchAccountChanges();

15. }

16.

17. private watchAccountChanges() {

18. if (window.ethereum) {

19. window.ethereum.on('accountsChanged', (accounts: string[]) => {

20. this.account.set(accounts[0] || null);
21. });

22. window.ethereum.on('chainChanged', (_chainId: string) => {

23. window.location.reload();

24. });

25. }

26. }

27. }

 Requesting Permissions and Signing

When a user wants to perform a blockchain action, like sending tokens or interacting

with a smart contract, the transaction must be signed by the wallet. The dApp prepares

the transaction and asks the wallet to sign it. The wallet prompts the user to confirm,

ensuring they have full control.

Example: Signing a message.

 1. async signMessage(message: string): Promise<string> {

 2. if (!window.ethereum || !this.account()) {
 3. throw new Error('Wallet not connected');

 4. }

 5.

 6. const signature = await window.ethereum.request({

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

406

 7. method: 'personal_sign',

 8. params: [message, this.account()],

 9. });

10.

11. return signature;

12. }

The signature can then be verified on-chain or off-chain, depending on the use case.

 Security Best Practices

Good wallet integrations respect user security:

• Never store private keys in the frontend.

• Always require explicit user confirmation for actions.

• Validate connected accounts before performing sensitive operations.

• Handle errors gracefully (e.g., user rejection, network issues).

 Putting It into Practice

A well-designed wallet service integrates seamlessly with Angular’s reactive architecture:

• Use signals or observables to keep components in sync with

connection status.

• Display clear prompts: connect, disconnect, and change network.

• Protect routes or features that depend on wallet access.

Practical Tip Test wallet interactions in multiple scenarios (switching accounts,

rejecting transactions, or disconnecting) to ensure the app handles edge cases

gracefully.

Next, you’ll see how to connect this wallet functionality with smart contracts,

reading blockchain state and submitting transactions securely from your Angular

application.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

407

 Smart Contracts: Reading and Writing Data

As already mentioned in Chapter 8, smart contracts are the backbone of any

decentralized application. They define the business rules that run on a blockchain,

handling tasks like transferring tokens, verifying ownership, or executing logic without

relying on centralized servers.

Connecting your Angular frontend to smart contracts unlocks the real potential of a

dApp, giving users the power to read blockchain data and execute secure transactions

directly from the browser.

A smart contract is self-executing code deployed to the blockchain. Once deployed,

its logic is immutable and publicly accessible. Users and applications interact with smart

contracts by calling their exposed functions.

Smart contracts often expose two kinds of functions:

• Read-Only Functions: Retrieve data from the blockchain without

modifying state. These calls are free and don’t require gas.

• State-Changing Functions: Modify on-chain data. These require a

signed transaction and consume gas.

 Interacting with Smart Contracts in Angular

In an Angular dApp, the usual workflow is the following:

 1. Connect the frontend to the blockchain using a provider.

 2. Connect the user’s wallet to sign transactions.

 3. Use a library like ethers.js to call contract functions.

A contract is represented in the frontend by its ABI (Application Binary Interface),

a JSON file that defines available functions and data structures.

 Reading Contract State

Read-only interactions use the provider directly. For example, suppose you have a

simple contract that stores a greeting:

1. function greet() public view returns (string memory)

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

408

The Angular service might look like this:

 1. import { Injectable } from '@angular/core';

 2. import { ethers } from 'ethers';

 3. import GreeterABI from './GreeterABI.json';

 4.

 5. @Injectable({ providedIn: 'root' })

 6. export class ContractService {

 7. private provider = new ethers.JsonRpcProvider('https://...');

 8. private contract = new ethers.Contract(

 9. '0xYourContractAddress',

10. GreeterABI,

11. this.provider

12.);

13.

14. async getGreeting(): Promise<string> {

15. return await this.contract.greet();

16. }

17. }

This call is free and does not require the user’s wallet to sign anything.

 Writing Data and Sending Transactions

To change state, the dApp needs the user’s wallet to sign and broadcast a transaction.

This uses a signer, which is connected to the wallet.

Example: Updating a greeting.

 1. import { ethers } from 'ethers';

 2.

 3. async updateGreeting(newGreeting: string) {

 4. if (!window.ethereum) throw new Error('No wallet found');

 5.

 6. const provider = new ethers.BrowserProvider(window.ethereum);

 7. const signer = await provider.getSigner();

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

409

 8. const contract = new ethers.Contract('0xYourContractAddress',

GreeterABI, signer);

 9.

10. const tx = await contract.setGreeting(newGreeting);

11. await tx.wait(); // Wait for transaction confirmation

12. }

This pattern ensures

• The wallet prompts the user to approve the action.

• The transaction is signed securely by the user’s private key.

• The frontend can wait for confirmations and provide feedback.

 Handling Gas and Fees

State-changing transactions consume gas, which users pay to incentivize miners or

validators to process them. A good dApp

• Clearly displays expected gas costs.

• Estimates gas limits before sending.

• Handles failed transactions gracefully.

For advanced scenarios, developers may integrate features like

• Adjustable gas fees

• Batch transactions

• Meta-transactions or relayers for gasless experiences

 Handling Errors and Edge Cases

Blockchain transactions can fail for many reasons: insufficient funds, user rejection, or

unexpected smart contract logic. Always

• Wrap calls in try/catch blocks.

• Provide clear error messages.

• Allow users to retry or cancel safely.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

410

Example:

1. try {

2. const tx = await contract.doSomething();

3. await tx.wait();

4. } catch (error) {

5. console.error('Transaction failed:', error);

6. }

 Putting It into Practice

A robust contract service in Angular:

• Keeps contract logic separate from components.

• Uses observables or signals to reflect on-chain changes in real time.

• Ensures secure signing through the user’s wallet.

• Provides clear feedback during pending, confirmed, or failed

transactions.

Practical Tip Use tools like block explorers (e.g., Etherscan) to debug

transactions and monitor contract events during development.

With contract interactions in place, the next step is designing real-world patterns

that handle routing, state updates, and user feedback smoothly, ensuring your Angular

dApp feels polished and trustworthy.

 Full Smart Contract Example with Hardhat

To see how all the parts fit together, let’s walk through a complete example: deploying a

simple Solidity contract and integrating it into an Angular service.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

411

 Writing the Contract

First, create a file called SimpleStorage.sol inside your contracts/ folder in your Hardhat

project:

 1. // SPDX-License-Identifier: MIT

 2. pragma solidity ^0.8.20;

 3.

 4. contract SimpleStorage {

 5. uint256 private data;

 6.

 7. event DataUpdated(uint256 oldValue, uint256 newValue);

 8.

 9. function set(uint256 _data) public {

10. uint256 old = data;

11. data = _data;

12. emit DataUpdated(old, _data);

13. }

14.

15. function get() public view returns (uint256) {

16. return data;

17. }

18. }

This contract

• Stores a single unsigned integer

• Lets anyone set or get the value

• Emits an event when the value changes

 Compiling the Contract

Run:

1. npx hardhat compile

Hardhat will generate the compiled contract artifacts in artifacts/.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

412

 Deploying the Contract Locally

Create a deploy script in scripts/deploy.js:

 1. async function main() {

 2. const SimpleStorage = await ethers.getContractFactory("Simple

Storage");

 3. const storage = await SimpleStorage.deploy();

 4. await storage.deployed();

 5. console.log(`SimpleStorage deployed to: ${storage.address}`);

 6. }

 7.

 8. main().catch((error) => {

 9. console.error(error);

10. process.exitCode = 1;

11. });

Run the local Hardhat node if you haven’t yet:

1. npx hardhat node

Deploy the contract:

1. npx hardhat run scripts/deploy.js --network localhost

Note the deployed address; you’ll use this in your Angular service.

 Copy the ABI

In artifacts/contracts/SimpleStorage.sol/SimpleStorage.json, copy the ABI section. You

can save it as src/assets/abi/SimpleStorage.json in your Angular project.

 Creating the Angular Contract Service

In your Angular app, create a contract.service.ts:

 1. import { Injectable, signal } from '@angular/core';

 2. import { ethers } from 'ethers';

 3. import SimpleStorage from '../assets/abi/SimpleStorage.json';

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

413

 4.

 5. declare global {

 6. interface Window {

 7. ethereum?: any;

 8. }

 9. }

10.

11. @Injectable({ providedIn: 'root' })

12. export class ContractService {

13. private provider: ethers.JsonRpcProvider;

14. private contract: ethers.Contract;

15.

16. value = signal<number | null>(null);
17.

18. constructor() {

19. this.provider = new ethers.JsonRpcProvider('http://

localhost:8545');

20.

21. const contractAddress = '0xYourDeployedAddressHere'; // replace

with your deployed address

22. this.contract = new ethers.Contract(contractAddress, SimpleStorage.

abi, this.provider);

23.

24. this.listenToEvents();

25. this.loadValue();

26. }

27.

28. async loadValue() {

29. const data = await this.contract.get();

30. this.value.set(data);

31. }

32.

33. async setValue(newValue: number) {

34. if (!window.ethereum) throw new Error('Wallet not detected');

35.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

414

36. const provider = new ethers.BrowserProvider(window.ethereum);

37. const signer = await provider.getSigner();

38. const contractWithSigner = this.contract.connect(signer);

39.

40. try {

41. const tx = await contractWithSigner.set(newValue);

42. await tx.wait();

43. } catch (error) {

44. console.error('Transaction failed:', error);

45. }

46. }

47.

48. listenToEvents() {

49. this.contract.on('DataUpdated', (oldValue, newValue) => {

50. console.log(`Value updated: ${oldValue} → ${newValue}`);

51. this.value.set(newValue);

52. });

53. }

54. }

 Using the Service in a Component

Example SimpleStorageComponent:

 1. @Component({

 2. selector: 'app-simple-storage',

 3. template: `

 4. <div>

 5. <p>Current Value: {{ contractService.value() }}</p>

 6. <input [(ngModel)]="inputValue" type="number" />

 7. <button (click)="updateValue()">Update Value</button>

 8. </div>

 9. `

10. })

11. export class SimpleStorageComponent {

12. inputValue = 0;

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

415

13.

14. constructor(public contractService: ContractService) {}

15.

16. updateValue() {

17. this.contractService.setValue(this.inputValue);

18. }

19. }

 Recap

With this full example you now have

• A real smart contract.

• Local deployment.

• A connected Angular service that

• Reads the value

• Sends transactions through the user’s wallet

• Reacts to on-chain events

This shows exactly how a real dApp integration works from Solidity to Angular.

 Handling Real Errors and Gas Estimation Problems

Building real dApps means handling real errors. Unlike a simple API call, blockchain

transactions involve multiple moving parts: gas fees, wallet signatures, network delays,

and contract edge cases.

A common stumbling block for new developers is the infamous “cannot estimate

gas” error. Understanding why it happens (and how to handle it) makes your dApp more

robust and user-friendly.

 Why “Cannot Estimate Gas” Happens

When you send a transaction, your wallet or provider first tries to simulate the

transaction locally to estimate how much gas it will cost.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

416

If the simulation fails, you’ll see an error like:

Error: cannot estimate gas; transaction may fail or may require manual gas limit

This usually means

• The function call would revert if actually executed (e.g., a require

condition fails).

• The call depends on a dynamic on-chain state that the local

simulation can’t resolve.

• The wallet or provider can’t find enough context to estimate gas accurately.

 Practical Strategies to Handle It

 1. Test the Logic with callStatic

Before sending a real transaction, you can dry-run it with

callStatic. This simulates the transaction without executing it,

letting you catch errors early.

Example:

 1. try {

 2. await contract.callStatic.set(42);

 3. } catch (error) {

 4. console.error('Transaction would fail:', error);

 5. return;

 6. }

 7.

 8. const tx = await contract.set(42);

 9. await tx.wait();

 2. Provide a Manual Gas Limit

If the simulation fails but you know the function should

succeed (e.g., you validated input client-side), you can supply a

conservative gasLimit override:

1. const tx = await contract.set(42, { gasLimit: 200000 });

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

417

Pick a limit based on typical runs plus some buffer. Avoid

excessive values to save user fees.

 3. Handle User Rejection Gracefully

Users may decline a transaction in their wallet. Always wrap your

transaction in try/catch to handle rejections or other issues:

 1. try {

 2. const tx = await contract.set(42);

 3. await tx.wait();

 4. } catch (error: any) {

 5. if (error.code === 4001) {

 6. console.log('User rejected the transaction');

 7. } else {

 8. console.error('Transaction failed:', error);

 9. }

10. }

Most wallet libraries use error codes like 4001 for user rejection.

 4. Show Clear Feedback

When estimation fails, tell the user why:

• Is the input invalid?

• Are they missing a required balance?

• Is the network congested?

Transparent feedback builds trust.

 Defensive Patterns

• Validate all inputs on the frontend. For example, check that token

amounts are positive, the user has enough balance, or preconditions

are met.

• Use clear UI states: pending, confirmed, failed, and rejected.

• Log errors during development. For production, handle them gracefully

and consider logging to a secure backend if needed for support.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

418

 Putting It into Practice

Updating your smart contract calls to handle estimation issues makes your app more

resilient:

 1. async setValue(newValue: number) {

 2. if (!window.ethereum) throw new Error('Wallet not found');

 3.

 4. const provider = new ethers.BrowserProvider(window.ethereum);

 5. const signer = await provider.getSigner();

 6. const contractWithSigner = this.contract.connect(signer);

 7.

 8. try {

 9. await contractWithSigner.callStatic.set(newValue);

10.

11. const tx = await contractWithSigner.set(newValue, { gasLimit:

200000 });

12. await tx.wait();

13. } catch (error: any) {

14. if (error.code === 4001) {

15. console.log('User rejected the transaction');

16. } else {

17. console.error('Error sending transaction:', error);

18. }

19. }

20. }

By combining callStatic, manual gas limits, strong validation, and clear error

messages, you protect your users from confusion and build trust in your dApp’s

reliability.

 Real-World Patterns for Web3 Frontends

Integrating blockchain logic into an Angular application goes beyond just connecting a

wallet or calling a smart contract. Real-world dApps must handle changing blockchain

states, manage secure routes, give clear user feedback, and recover gracefully from

unexpected errors.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

419

This section explores practical patterns that make Web3 frontends reliable, secure,

and user-friendly.

 Protecting Routes and Features

In many dApps, certain features depend on wallet authentication or a verified

blockchain state, for example, showing a dashboard only to token holders or restricting

access to admin functionality.

Angular’s routing system makes it easy to secure routes using route guards. A guard

can check whether the wallet is connected, whether the user is on the correct network,

or whether the user’s address meets specific conditions (like holding a role or a token).

Example: A simple CanActivate guard for wallet connection.

 1. import { Injectable } from '@angular/core';

 2. import { CanActivate, Router } from '@angular/router';

 3. import { WalletService } from './wallet.service';

 4.

 5. @Injectable({ providedIn: 'root' })

 6. export class WalletGuard implements CanActivate {

 7. constructor(private walletService: WalletService, private router:

Router) {}

 8.

 9. canActivate(): boolean {

10. if (!this.walletService.account()) {

11. this.router.navigate(['/connect']);

12. return false;

13. }

14. return true;

15. }

16. }

 Listening for Blockchain Events

Smart contracts often emit events when something important happens: a token transfer,

a vote cast, or a new NFT minted. A responsive dApp listens for these events and updates

the UI in real time.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

420

In Angular, you can use observables, signals, or behavior subjects to stream contract

events into your components.

Example: Listening for events with ethers.js.

1. this.contract.on('Transfer', (from, to, value) => {

2. console.log(`Token transferred from ${from} to ${to}: ${value}`);

3. });

Always unsubscribe or remove listeners properly when the component is destroyed

to prevent memory leaks.

 Keeping UX Responsive

Blockchain operations can take time, especially transactions waiting to be mined. A good

dApp keeps users informed at every step:

• Show a pending state when a transaction is submitted.

• Display the transaction hash and a link to a block explorer.

• Notify when the transaction is confirmed or if it fails.

• Handle rejection gracefully if the user cancels.

Example: Transaction status pattern.

1. this.contract.doSomething().then((tx) => {

2. this.status = 'pending';

3. return tx.wait();

4. }).then(() => {

5. this.status = 'confirmed';

6. }).catch((error) => {

7. this.status = 'failed';

8. });

 Security Best Practices

In decentralized apps, the frontend must never be trusted as the sole source of truth.

Smart contracts enforce the final rules, but the frontend must be defensive:

• Validate user inputs thoroughly before sending transactions.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

421

• Do not store sensitive data like private keys in the browser.

• Keep contracts audited and ABIs up to date.

• Clearly show the user what they are signing.

 Handling Network Changes

Users might switch networks in their wallet while using the app. Detecting these changes

and responding appropriately prevents user confusion or accidental transactions on the

wrong chain.

Example: Reacting to chain changes.

1. if (window.ethereum) {

2. window.ethereum.on('chainChanged', (_chainId: string) => {

3. window.location.reload();

4. });

5. }

This ensures the app resets its state to match the new network.

 Resilient Error Handling

Web3 interactions introduce edge cases:

• Users may reject a signature prompt.

• Transactions may be dropped or replaced.

• RPC nodes may fail or return incomplete data.

A robust Angular dApp:

• Wraps blockchain calls in try/catch blocks.

• Shows meaningful error messages.

• Provides fallback strategies (e.g., multiple providers).

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

422

 Putting It into Practice

Bringing these patterns together helps turn a basic prototype into a real product:

• Use route guards for secure access.

• React to wallet and network changes.

• Stream contract events to the UI reactively.

• Give users clear feedback for every action.

• Always assume the blockchain is the source of truth.

Practical Tip Test your dApp with multiple wallets and network conditions to

ensure your patterns hold up under real-world scenarios.

Next, you’ll tie all of this together by building a mini Angular dApp, combining

wallet connection, provider setup, contract interactions, and real-world UX patterns into

one working example.

 Putting It All Together: A Mini Angular dApp

Building blocks are only truly useful when combined into a complete, working example.

In this section, you’ll see how to combine Angular’s modern features, wallet integration,

blockchain connections, and smart contract interactions to create a simple yet realistic

decentralized application.

 A Practical Example: Decentralized Voting App

As an illustrative case, imagine a decentralized voting app. This dApp lets connected

wallet users vote on a proposal, view live results, and verify that votes are counted

transparently on the blockchain.

 Project Structure

A practical Angular dApp follows a clear, modular structure:

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

423

 1. src/

 2. ├── app/

 3. │ ├── services/

 4. │ │ ├── blockchain.service.ts

 5. │ │ ├── wallet.service.ts

 6. │ │ └── contract.service.ts

 7. │ ├── components/

 8. │ │ ├── connect-wallet/

 9. │ │ ├── voting-form/

10. │ │ └── results-display/

11. │ ├── guards/

12. │ │ └── wallet.guard.ts

13. │ ├── app.routes.ts

14. │ ├── app.component.ts

15. │ └── app.config.ts

Each piece is focused:

• Services handle connections, wallet state, and contract calls.

• Components handle UI and user interaction.

• Guards protect routes that require a connected wallet.

 Connecting the Wallet

The user first lands on a Connect Wallet page. This component calls the wallet service to

request a wallet connection:

1. async connect() {

2. try {

3. await this.walletService.connectWallet();

4. } catch (error) {

5. console.error('Connection failed:', error);

6. }

7. }

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

424

The service uses a signal or observable to store the user’s address, keeping the rest of

the app reactive.

 Reading On-Chain Data

Once connected, the user navigates to the voting form. The contract service reads

whether the user has voted, retrieves the current tally, and subscribes to contract events

for real-time updates.

Example: Getting the current vote count.

1. async getVotes(): Promise<number> {

2. return await this.contract.totalVotes();

3. }

 Writing a Transaction

When a user casts a vote, the transaction must be signed and sent. The contract service

prepares the transaction and prompts the wallet to sign:

1. async vote(option: number) {

2. const provider = new ethers.BrowserProvider(window.ethereum);

3. const signer = await provider.getSigner();

4. const contractWithSigner = this.contract.connect(signer);

5.

6. const tx = await contractWithSigner.vote(option);

7. await tx.wait();

8. }

The UI should reflect:

• Pending status while waiting for confirmation.

• A link to the transaction on a block explorer.

• An updated tally when the vote is mined.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

425

 Protecting Voting Routes

The voting form route is protected by a guard to ensure only connected users can

access it:

1. { path: 'vote', component: VotingFormComponent, canActivate:

[WalletGuard] }

 Reactive Feedback

As votes come in, the frontend listens to smart contract events and updates the results

display:

1. this.contract.on('VoteCast', (voter, option) => {

2. this.refreshResults();

3. });

The UI remains in sync with the blockchain state without needing manual refreshes.

 Full Example: Combining It All

Putting these parts together shows the full lifecycle:

• The wallet service manages account state.

• The blockchain service provides a reliable RPC connection.

• The contract service handles ABI calls and transactions.

• Components use Angular’s signals or observables to react to state

changes.

• Routing guards ensure only eligible users access protected views.

• The UI shows clear progress, confirmations, and on-chain data.

 Final Tips

A real dApp should also

• Handle errors if the user rejects a transaction.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

426

• Prompt the user to switch networks if needed.

• Display a fallback message if the wallet is disconnected.

• Keep contract ABIs updated and verified.

Practical Tip Start simple: a single contract and wallet connection. Expand

gradually to multiple contracts, networks, and advanced UX once the core is stable.

With these pieces working together, you now have a blueprint for a production-

ready Angular dApp: modular, secure, reactive, and aligned with best practices for

decentralized applications.

 Testing and Deployment Strategies
for Angular dApps

A professional dApp isn’t just about deploying a smart contract and wiring up a UI; it’s

about verifying that every part works reliably and stays secure as you make changes

over time. Testing and thoughtful deployment practices ensure your decentralized

application can grow without surprises.

 Testing Smart Contracts

Smart contract logic should always be tested thoroughly before you deploy to any

network. Bugs in smart contracts are expensive; they can’t be patched as easily as

backend servers.

Tools like Hardhat or Foundry let you write repeatable unit tests for your Solidity

contracts:

 1. const { expect } = require("chai");

 2.

 3. describe("SimpleStorage", function () {

 4. it("Should store and retrieve a value", async function () {

 5. const SimpleStorage = await ethers.getContractFactory("Simple

Storage");

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

427

 6. const storage = await SimpleStorage.deploy();

 7. await storage.deployed();

 8.

 9. await storage.set(42);

10. expect(await storage.get()).to.equal(42);

11. });

12. });

Run your tests with:

1. npx hardhat test

Testing covers:

• Normal paths (expected values).

• Edge cases (zero values, large numbers).

• Failure conditions (e.g., unauthorized calls).

 Testing Angular Wallet Logic

On the frontend, test your wallet integration and contract services like any other Angular

service:

• Use dependency injection and mocks.

• Simulate wallet connections and disconnections.

• Mock blockchain calls with fake data or use local Hardhat nodes for

integration tests.

Example test outline:

 1. import { TestBed } from '@angular/core/testing';

 2. import { WalletService } from './wallet.service';

 3.

 4. describe('WalletService', () => {

 5. let service: WalletService;

 6.

 7. beforeEach(() => {

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

428

 8. TestBed.configureTestingModule({});

 9. service = TestBed.inject(WalletService);

10. });

11.

12. it('should create', () => {

13. expect(service).toBeTruthy();

14. });

15.

16. // Add more tests to simulate wallet connection logic

17. });

For E2E tests, you can automate wallet flows using tools like Playwright or Cypress,

though real signing steps often require manual interaction or custom stubbing for full

automation.

 Using Testnets

Before deploying to a live network:

• Always deploy to a testnet like Sepolia, Goerli, or Polygon Mumbai.

• Use faucets to get free test tokens.

• Verify your contract works with real wallets and real blocks.

• Share your testnet app with users to get early feedback.

 Deployment Best Practices

When you’re ready to go live:

• Verify your contract on a block explorer (like Etherscan) so others

can audit it.

• Use secure deployment tools, such as Hardhat or third-party

deployment managers.

• Keep your private keys out of version control.

• Host your Angular app using a static site host (Netlify, Vercel) or deploy

to decentralized storage (IPFS) for fully decentralized delivery.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

429

 Maintainability

Good deployment doesn’t end at go-live. Keep track of:

• Contract addresses for each network.

• ABI versions: update your Angular app when you update your

contracts.

• New features or bug fixes that may require migrating state or

upgrading contracts (with proxies or new deployments).

Practical Tip Create an environment file to manage sensitive keys and network

URLs securely, and use environment variables to switch between local, testnet, and

mainnet providers.

A well-tested, securely deployed Angular dApp shows users that your project

respects their trust and that it’s built to last.

 Conclusion

In this chapter, we put theory into action by building a complete decentralized

application from scratch. You saw how to integrate Angular with a blockchain backend,

connect and manage user wallets, interact with smart contracts securely, and handle

data updates in real time.

We explored patterns for routing, state management, and event handling tailored

to dApps, along with testing and deployment steps that ensure both reliability and

security. By walking through a working example, you’ve learned not only the individual

techniques but also how they fit together into a cohesive development workflow.

These skills equip you to design and deliver functional, user-friendly Web3

applications.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

430

 Chapter Summary

Topic Key Takeaways

Decentralized

Applications (dApps)

Combine blockchain logic with familiar web frontends for trustless

interactions.

Angular for dApps Modular design, strong reactivity, and tooling make Angular ideal for

Web3 apps.

Wallet Integration Securely connects users to dApps, manages accounts, and signs

transactions.

Smart Contract

Interaction

Read/write blockchain state via ethers.js and secure wallet signing.

Real-World Frontend

Patterns

Protect routes, handle events reactively, and provide robust error

handling.

Full Angular dApp

Example

Demonstrated contract deployment, service integration, and live UI

updates.

Testing and Deployment Covers smart contract testing, frontend integration tests, and secure

deployment.

Final Thoughts Principles and skills learned here extend to future decentralized

innovations.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

431

 Final Words and Further Learning

Throughout this book, you’ve explored how to build modern, scalable web applications

with Angular and how to extend them into the emerging world of decentralized

applications. You’ve seen how clear architecture, reactivity, strong typing, and thoughtful

design empower you to tackle new technical frontiers like blockchain and Web3.

No single tool or framework guarantees success. What makes your work stand out

is how you combine these tools with secure patterns, user-first experiences, and the

discipline to keep learning.

As technology continues to evolve, the core ideas remain:

• Keep your code maintainable and readable.

• Test thoroughly and adapt best practices for new contexts.

• Stay curious and open to new tools and patterns.

• Build with trust, security, and usability in mind.

Above all, keep sharing your knowledge and experimenting, because the next

generation of the web will be built by developers like you, ready to adapt, collaborate,

and lead.

 Suggested Resources for Continued Learning

To go deeper:

• Angular Official Docs: angular.io

• Ethers.js Documentation: docs.ethers.io

• Web3.js Documentation: web3js.readthedocs.io

• Hardhat (Smart Contract Development): hardhat.org

• OpenZeppelin Guides: docs.openzeppelin.com

• Block Explorers: Use tools like Etherscan or Polygonscan to verify

contracts and monitor transactions.

• Testnets and Faucets: Practice safely before deploying on mainnet.

• Community and Standards: Follow EIPs, forums, and developer

groups to stay updated.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

https://angular.io
https://web3js.readthedocs.io
https://hardhat.org
http://docs.openzeppelin.com

432

 Keep Building

The foundations you’ve laid (clear structure, robust state management, strong testing,

secure blockchain integration) will serve you well as you tackle new ideas and build

solutions that push the web forward.

Your curiosity, discipline, and willingness to experiment are your best tools. Use

them well; the decentralized future is yours to shape.

CHAPTER 10 WEB3 DEVELOPMENT WITH ANGULAR

433
© Soumaya Erradi 2025
S. Erradi, Web3 Development with Angular, https://doi.org/10.1007/979-8-8688-1886-8

Index

A

ABI, see Application binary interface (ABI)

Ahead-of-Time (AOT) compilation, 386

AI, see Artificial intelligence (AI)

AML, see Anti-money laundering (AML)

AMMs, see Automated market

makers (AMMs)

Angular application

architecture, 354, 357

benefits, 353

blockchain networks, 397–402

compile/deployment, 398

components, 402

development environment, 397

libraries, 400

local Hardhat node, 398

network switching/fallbacks, 401

project structure, 398

required tools/versions, 397

RPC providers, 399

security considerations, 402

service, 399–401

wallet, 399

change detection, 355

CLI (see Command-line

interface (CLI))

components, 354

concepts, 352, 354

continuous learning/innovation, 353

decentralized application, 393–397

definition, 351

design principles, 352

directives and pipes, 356

HTTP/APIs, 366–371

lifecycle hooks, 356

mini angular dApp

decentralized voting app, 422

lifecycle, 425

modular structure, 422, 423

reactive feedback, 425

reading on-chain data, 424

real-life application, 425

transaction, 424

voting form route, 425

wallet connection, 423

modernization, 352

modular design, 352

modules, 354

performance optimization, 385

change detection system, 386

component level, 387

fine-grained reactivity, 387

incremental hydration, 388

lazy loading, 387

server-side rendering, 388

time/device capabilities, 388

tree-shaking/AOT compilation, 386

zoneless change detection, 387

reactive forms, 355

real-world projects, 389

consistent coding standards, 390

emerging technologies, 391

frontend approaches, 389

libraries, 389

https://doi.org/10.1007/979-8-8688-1886-8#DOI

434

micro-frontend strategies, 390

modern integration, 390

modular design, 389

Monorepo setups, 389

traditional analytics, 390

reinvention, 352

resources, 431

routes/navigation, 355

routing/guards/lazy loading, 375–379

services, 354

smart contracts, 407–422

standalone components, 354

state management, 361–366

template-driven forms, 355

testing

components/services, 380

concepts, 379

end-of-end (E2E), 383

features, 380

HTTP requests, 382, 383

modern test runners, 382

Playwright/Cypress, 383

pyramid, 384, 385

strategies, 384

TestBed, 381

unit tests, 380, 381

testing/deployment strategies, 426

deployment, 428

Hardhat/Foundry, 426

maintainability, 429

smart contract, 426

Testnets, 428

wallet integration/contract

services, 427

user interface, 371–375

Angular, lazy loading, 355

Anti-money laundering (AML), 110

API, see Application programming

interfaces (APIs)

Application binary interface (ABI),

303, 346

Application programming

interfaces (APIs)

GraphQL client, 369

handling errors/retries, 369

HTTP (see Hypertext transfer

protocol (HTTP))

pagination, 370

remote procedure call, 274, 275

services, 367, 368

Applications

comparison, 188

currency, 110–118

decentralization, 186

decision-making framework, 189, 190

developer ecosystem, 186

fees comparison, 187

financial sector, 105–110

framework priorities, 190

interoperability, 188

key factors, 184

key industries, 104, 105

long-term evolution, 190

Minimum Viable Product (MVP), 189

project priorities, 189

property record management, 118–123

regulatory environment, 187

scalability, 185, 186

security, 185

smart contract, 129–134

supply chain management, 130–136

transactions per Second (TPS), 184

voting system, 136–143

Artificial intelligence (AI), 135, 143

cost considerations, 165

Angular application (cont.)

INDEX

435

regulatory approaches, 174

transaction speed, 169

Automated market makers (AMMs), 59

B

BaaS, see Blockchain-as-a-

Service (BaaS)

BFT, see Byzantine Fault Tolerance (BFT)

Binance Smart Chain (BSC), 84

Bitcoin (BTC), 28, 68, 69

cross-border payments, 108

cryptocurrencies, 111

network security mechanisms, 101

transaction fees, 83

Blockchain-as-a-Service (BaaS), 169

Blockchain technology, 103, 177

applications (see Applications)

architecture, 43, 72

Bitcoin, 68

components, 72

concepts, 65, 66

consensus mechanisms, 44, 45, 74–77

cost structure, 159–165

decentralization (see Decentralization)

decentralized ledger, 43, 44

definition, 66

distributed ledger, 74

efficient transactions, 149–154

Ethereum (see Ethereum (ETH))

evolution, 69

features, 66, 67

fee market dynamics, 85, 86

genesis block, 73

historical background/evolution, 67

immutable ledger, 39

key players/projects, 69–71

layer 2 solutions, 45, 46

Merkle tree structure, 73, 74

multiple layers and components, 71

nodes/network structure

full nodes, 77

hard fork vs. soft fork, 80

light nodes (SPV nodes), 78

mining/validator nodes, 78

P2P network, 78, 79

structure/funtion, 77

types, 78

platforms, 71

PoS, 44

PoW, 44, 72

pros and cons, 149

providers (see Providers)

regulatory approaches, 170–175

adoption/scalability, 170

China, 172

consumer protection, 173

cross-border collaboration, 172

digital identity systems, 174

El Salvador, 172

environmental considerations, 174

European Union, 171

India, 172

innovation control, 172

intellectual property, 174

legal/compliance issues, 170, 171

perspectives, 170

sandboxes, 173

self-regulation, 173

smart contracts, 171

South Korea, 172

taxation, 174

technical expertise, 172

tokens, 173

United States, 171

voting/governance, 174

INDEX

436

rollups, 46

scalability, 68

scalability requirements, 76

scaling solutions, 86

sidechains, 45

smart contracts, 46–49, 68

state channels, 45

structure of, 66

technical architecture, 44

transactions, 80

broadcasting network, 81

components, 81

creation, 81

double-spending, 82

fees/incentives, 83–86

finality, 83

inclusion, 82

lifecycle, 81, 83

miners/validators, 84

signature validity, 82

validation/verification, 82

transparency, 155–159

BSC, see Binance Smart Chain (BSC)

Byzantine Fault Tolerance (BFT), 44,

76, 77, 147

network security mechanisms, 97

C

Cardano (ADA), 70

CBDCs, see Central bank digital

currencies (CBDCs)

Central bank digital currencies

(CBDCs), 110

benefits, 114

competition, 115

definition, 114

implementation costs, 115

implementation initiatives, 115

key features, 114

privacy concerns, 115

Chainlink (LINK), 70

CLI, see Command-line interface (CLI)

Command-line interface (CLI)

build process, 360

creation, 358

environment files, 360

folder structure, 358

hot module replacement (HMR), 360

installation, 358

module-based setups, 360

schematics, 361

setup, 357

solid foundation, 361

standalone vs. module structure, 359

well-structured project, 361

Component Dev Kit (CDK), 371, 373

Cost considerations

architecture, 160

cost-saving opportunities, 162

development, 161

energy consumption, 161

energy-intensive, 163

energy requirements, 163

environmental impact, 163

fraud mitigation, 162

hardware/software infrastructure, 160

implementation, 164

industries, 163

integration costs, 161

intermediaries, 162

mining operations, 163

open-source frameworks, 164

operational efficiency, 162

scalability, 163

Blockchain technology (cont.)

INDEX

437

smart contracts, 162

token incentives, 164

Cryptocurrencies

Altcoins/tokens, 28

Bitcoin, 28, 68, 103

cross-border remittances, 35

definition, 111

ETH, 28

features, 111

financial inclusion, 33

Litecoin (LTC), 111

native payments, 26

smart contracts, 29, 30

stablecoins, 28, 60

traditional online payments, 27

types of, 29

wallets (see Wallets)

Currencies

central bank digital currencies, 114, 115

concepts, 110

cryptocurrencies, 111

stablecoins, 111–113

use cases/adoption, 115

adoption trends, 116

cross-border trade, 116

digital payments, 116

regulatory uncertainty, 116

scalability, 116

technological accessibility, 116

timeline, 117, 118

tokenized ecosystems, 116

D

DAOs, see Decentralized Autonomous

Organizations (DAOs)

dApps, see Decentralized

applications (dApps)

DDOs, see Distributed Denial of

Service (DDoS)

Decentralization, 6

advantages/trade-offs, 148

benefits, 88, 91, 146

censorship, 147

censorship resistance, 89

central authority, 87

centralized vs. distributed

architecture, 146

centralized vs. distributed networks, 87

challenges, 93, 148, 149

computational power and

electricity, 92

consensus mechanisms, 87

cryptography, 94–96

digital signature, 95

hash function, 94

private key, 96

public-key, 96

definition, 86

features, 87

financial inclusion, 148

governance models, 92

health data platforms, 148

integrity, 146

intermediaries, 90

key advantages, 88

levels of, 279

network security mechanisms, 96

architecture, 97

51% attack, 98

attack vectors, 98–100

consensus mechanisms, 97

fault tolerance, 98

security breaches, 100, 101

smart contracts, 98

Sybil attack, 98

INDEX

438

practical principle, 186

providers, 279

regulation/compliance, 93

scalability, 91

sectors, 148

security, 94

security and resilience, 88, 89, 147

security/transparency, 87

self-hosting, 284

single point failure, 146

supply chains, 148

trade-offs, 91

transparency/trust, 90

user control/ownership, 89

user experience (UX), 93

Decentralized applications (dApps), 27,

295, 422

angular, 393, 396

architecture, 55

architecture layers, 345

blockchain network, 394

calling view functions, 346

characteristics, 55

components, 54

computing, 51

definition, 54, 394

ETH, 191

ethers.js, 346

events/real-time feedback, 346

features, 56

finance, 57

frontend libraries/frameworks, 348

gaming, 57

governance, 57

handling gas/errors/confirmation, 346

integration, 344, 397

network management, 347

sector, 56, 58

sending transactions, 346

smart contracts (see Smart contracts)

social media, 57

srchitecture, 396, 397

testnets, 347

UI/UX patterns, 348

wallets, 211, 345

web frontend, 394

Decentralized Autonomous Organizations

(DAOs), 13, 37, 169

DApps, 57

decentralization, 92

ETH, 204, 205

smart contracts, 311

Decentralized computing

challenges, 52, 53

definition, 51

Golem and Filecoin, 52

ongoing developments, 52

platforms, 51

solutions, 53

Decentralized exchanges (DEXs),

48, 59, 105

Decentralized finance (DeFi), 11,

105–107, 173

advantages, 60, 106

applications, 103

automated market makers, 309

benefits and risks, 62

challenges, 106

components, 59

Curve Finance, 63

DAO contracts, 311

derivatives/synthetic assets, 60

DEXs, 105

ecosystem, 59, 107

ETH, 202, 203

Decentralization (cont.)

INDEX

439

features, 105

financial applications, 59

financial system, 40

interest/borrow assets, 60

lending and borrowing, 106

lending protocols, 309

liquidity invariant, 309

MakerDAO, 63

marketplace contracts, 311

native payment systems, 33, 34

NFT smart contracts, 310

open-source protocols, 308

platforms, 58, 62, 63

responsibility, 61

risks/challenges, 61

smart contracts, 48, 106, 125

stablecoins, 60, 106, 113

transaction efficiency, 153

Uniswap/Aave, 62

vulnerabilities, 61

Web2/Web3 application, 182

yield farming and aggregators, 310

yield farming and liquidity mining, 60

Decentralized identifiers (DIDs), 158, 173

Decentralized identity (DID), 11, 12

DeFi, see Decentralized finance (DeFi)

Delegated Proof of Stake (DPoS), 44, 166

comparison, 77

consensus mechanism, 75

DEXs, see Decentralized

exchanges (DEXs)

DIDs, see Decentralized identifiers (DIDs)

Digital ownership

central concept, 19

centralized vs. decentralized

systems, 19, 20

concept, 19, 26

consumers, 25

content creators, 24–26

direct and exclusive control, 20, 21

integration, 26

non-fungible tokens, 21–24

Distributed Denial of Service (DDoS), 146

network security mechanisms, 98

DLD, see Dubai Land Department (DLD)

Dubai Land Department (DLD), 122

E

ECC, see Elliptic Curve

Cryptography (ECC)

EEA, see Enterprise Ethereum

Alliance (EEA)

Elliptic Curve Cryptography (ECC), 96

Enterprise Ethereum Alliance (EEA), 173

Ethereum (ETH), 28, 69, 197, 198

Bitcoin development, 191

Blockchain, 68

community-driven approach, 201

concepts, 190

core components, 194, 195

creation of, 192

cross-border payments, 108

cryptocurrencies, 111

DAO governance process, 205, 206

DAO hack, 100

DeFi ecosystem, 203, 204

developer ecosystem, 205

developer tools, 201

EVM concepts, 195–197

features, 193

financial paradigm, 202

Frontier, 191

Gas System, 198

global computer, 196

JSON-RPC methods, 274

INDEX

440

NFT revolution, 203, 204

nodes/network structure, 80

PoS, 198, 199

roadmap phases, 205

scaling solutions, 199, 200

smart contracts, 129, 194, 195, 197

token standards, 200, 201

transaction fees, 83

vision, 192, 193

Ethereum Classic (ETC), 80

Ethereum Virtual Machine

(EVM), 195–197

compilation process, 334

gas/costs/efficiency, 318

providers, 254

smart contracts, 299, 300

EVM, see Ethereum Virtual

Machine (EVM)

F

FATF, see Financial Action Task

Force (FATF)

Financial Action Task Force (FATF), 173

Financial sector

cross-border payments, 107, 108

Bitcoin/Ethereum, 108

intermediaries, 107

international trade, 108

regulations, 108

Ripple (XRP), 107

Stellar (XLM), 107

traditional vs. blockchain, 108

transfer services, 108

transparency/security, 107

volatility, 108

decentralized finance, 105–107

definition, 105

P2P lending platforms, 109, 110

G

Gas System, 198, 199

H

Honduras Land Title Pilot Project, 122

HTTP, see Hypertext transfer

protocol (HTTP)

Hypertext transfer protocol (HTTP)

data consuming, 368

error handling, 371

GraphQL client, 369

handle errors/retry requests/

cancel, 369

HttpClient, 367

pagination, 370

real-time data, 369

service creation, 367, 368

WebSockets, 369

working process, 366

I, J

India’s Land Registry Projects, 122

Internet of Things (IoT), 135

InterPlanetary File System (IPFS), 50

IoT, see Internet of Things (IoT)

IPFS, see InterPlanetary File

System (IPFS)

K

Key performance indicators (KPIs), 278

KPIs, see Key performance

indicators (KPIs)

Ethereum (ETH) (cont.)

INDEX

441

L

Litecoin (LTC), cryptocurrencies, 111

M

Man-in-the-Middle (MITM), 267

MITM, see Man-in-the-Middle (MITM)

Mnemonic phrase

advanced security strategies, 224

backups, 222

benefits, 221

cold storage solutions, 225

creation, 216

crypto community, 223, 224

encryption, 225

financial sovereignty, 219

flow process, 217

geopolitical risk, 220

hidden wallets, 225

key management

air-gapped devices, 232

concepts, 229

crypto world, 230

hardware wallets, 231

hierarchical deterministic

(HD), 232

multi-signature wallets, 231

strategies and risks, 230

Web3, 232

master key, 217, 218

multiple signature, 225

online risks, 219

physical/digital/procedural

protection, 219

physical gold/bearer bonds, 218

public/private keys, 226

definition, 226

differences, 228

key management, 229–232

master password, 226

properties, 227

public keys, 227, 228

technical details, 227

trustless security model, 228

radical empowerment, 218

safe locations, 220

security, 216, 219, 223

seed phrase, 220

sharding process, 221

N

NAPR, see National Agency of Public

Registry (NAPR)

National Agency of Public Registry

(NAPR), 122

Native payment systems

benefits, 31

concepts, 26

cross-border remittances, 35, 36

cryptocurrencies, 26, 28, 29

DeFi platforms, 33, 34

e-commerce platforms, 34, 35

financial inclusion, 33

OpenSea payment flow, 35

privacy, 32

security, 32

smart contract, 29, 30

speed and efficiency, 31

vs. traditional payments, 27

vs. traditional systems, 30–33

transaction fees, 32

Network considerations

automatic retries, 264

circuit breakers, 264

data injection attacks, 267

INDEX

442

definition, 258

failures, 263

fallback systems, 265, 266

global geographic coverage, 263, 264

IP address, 268

key management, 268

latency, 258, 259

man-in-the-middle attack, 267

multi-region setup, 264

performance metrics, 258

privacy, 268

privacy-preserving approach, 269

reliability, 263

security risks, 266

server deployment, 263

throughput, 260, 261

uptime tiers, 261, 262

NFTs, see Non-fungible tokens (NFTs)

Non-fungible tokens (NFTs), 6, 310

definition, 21

digital ownership, 19

ETH, 203, 204

fungible vs. non-fungible

tokens, 22

gaming industry, 23

impact of, 23, 24

lifecycle overview, 22, 23

smart contracts, 48, 126

O

Open-source software (OSS)

community-driven development, 37

concepts, 36

governance decisions, 37

security audits, 38

OSS, see Open-source software (OSS)

P, Q

Peer-to-peer (P2P), 13

financial sector

advantages, 109

Celsius, 109

challenges, 110

global access, 109

lending platforms, 109

MakerDAO, 109

smart contracts, 109

tokenization, 109

Polkadot (DOT), 70

PoS, see Proof of Stake (PoS)

PoW, see Proof of Work (PoW)

P2P, see Peer-to-peer (P2P)

Proof of Authority (PoA)

comparison, 77

consensus mechanism, 44, 76

Proof of History (PoH), 70, 76, 77

Proof of Stake (PoS), 69

block rewards/transaction fees,

85–88

comparison, 76

consensus mechanism, 44, 75

decentralization, 92

energy consumption, 154

ETH, 198, 199

network security mechanisms, 97

transaction speed, 166

Proof of Work (PoW)

block rewards/transaction fees, 85–88

comparison, 76

consensus mechanism, 44, 75

decentralization, 92

energy consumption, 154

network security mechanisms, 97

transaction speed, 166

Network considerations (cont.)

INDEX

443

Property record management

case studies/

implementations, 121–124

concepts, 118

digital land registries, 118

architecture, 120

benefits, 119

challenges, 118

integration, 119

key features, 118

legal and regulatory

frameworks, 119

working process, 119

ownership verification, 120

disasters, 121

immutable records, 121

mortgages and loans, 121

ownership verification, 121

smart contracts, 120

title insurance, 121

tokenization, 120

Providers

accessibility, 258

aggregation strategies, 289

architectural decisions, 277

characteristics, 279

complex systems, 251

decentralization, 279

decentralized RPC networks, 287, 288

developer experience (DX), 282

emerging technologies, 283

evolution, 252

factors, 280, 282, 286

fallback systems, 288

full node, 251, 253, 254, 285

gateway, 256

hardware requirements, 284

historical evolution, 251, 252

hybrid architecture, 287, 288

hybridization, 257

indexing, 256

Infura outage, 280

key trends shaping, 291

KPIs, 278

libraries, 289

metadata, 268

multichain applications, 290

multichain development, 283

multichain orchestration, 292

network (see Network considerations)

NFT minting test, 278

operational challenges, 285, 286

optimization, 282

pocket network growth, 288

pricing models, 282

privacy-preserving interactions, 291

production-ready applications,

290, 291

protocols, 250

querying, 256

regional optimization, 278

regulations, 281

resilience, 258

responsibilities, 290

role of, 249

RPC methods, 253, 254

RPC/wallet providers, 269–277

scalability, 258

seamless multichain orchestration, 292

security/compliance, 280

self-hosting, 284, 286

service/software component, 250

software, 284

speed/performance, 277

synchronization, 285

Tornado Cash Sanctions, 281

INDEX

444

transaction signing process, 255

trust models, 279

types of, 252

users/applications, 250

wallet, 254, 255

zero-knowledge proofs, 291

R

Remote procedure call (RPC)

Alchemy/QuickNode, 275

API exposure, 274, 275

blockchain networks, 399

centralized/decentralized model, 279

data access/transaction, 274

decentralized networks, 287, 288

Infura, 275

JSON-RPC methods, 274

node management/scaling, 275

providers, 253, 254

wallet providers, 276

Representational State Transfer

(REST), 369

REST, see Representational State

Transfer (REST)

Ripple (XRP), 70, 107

Ripple Protocol Consensus Algorithm

(RPCA), 71

Routing system

CanActivate guard, 377

configuration, 376, 378

features, 379

guard interfaces, 377

lazy loading, 378

nested routes/dynamic segments,

376, 377

parameters, 377

public-facing applications, 379

scenario, 379

RPCA, see Ripple Protocol Consensus

Algorithm (RPCA)

S

Security mechanisms

challenges/solutions, 15

cryptographic principles, 9–12

decentralized governance, 13, 14

decentralized identity, 11, 12

encryption, 10

global regulatory considerations, 18

homomorphic encryption, 15

key management, 16

legal/regulatory challenges, 18

mixing services, 15

P2P networks, 13

phishing attack vectors, 17

privacy-enhancing technologies, 15

privacy via mixing services, 15

public and private key, 10

responsibility/education, 16

social engineering/phishing attacks, 17

zero-knowledge proofs, 10

Server-Sent Events (SSE), 369

Server-side rendering (SSR), 388

Single-page application (SPA), 375

Smart contracts, 29, 30

angular application

contract service, 410

error handling/edge cases, 409

gas/fees, 409

interaction, 407

read-only functions, 407, 408

real-world patterns, 410

state-changing functions, 407

Providers (cont.)

INDEX

445

writing data/sending transaction,

408, 409

architecture, 302

Axie Infinity, 129

blockchain, 46–49

bytecode, 298

close voting, 333

coding errors, 128

compilation process

Foundry, 336, 337

Hardhat, 334, 335

Remix, 337

solidity, 334

tool generation, 334

compiler, 316

compiling/deployment, 334

compliance, 127

composability, 308

concepts, 310

constructor, 332

core building blocks, 295

core properties, 296

definition, 47, 124, 296, 329

DeFi platforms, 48

delegation, 306

deployment, 316, 338, 343

design constraints/limitations, 300

development lifecycle, 314

development tools, 323

error handling, 421

escrow/conditional payments, 312

escrow services, 125

ETH, 194, 195

ethical concerns, 128

events, 306, 331, 419

EVM, 299, 300

EVM bytecode, 316

execution, 124

flow, 47

stack, 300

features, 124

flowchart/state machine, 315

formal audits, 343

foundation, 302

Foundry, 325, 326, 328, 343

full code (solidity 0.8+), 329, 330

gaming and NFTs, 126

gaming/virtual economies, 313

gas

costs/efficiency, 318

data types, 321

developers, 319

limits/out-of-errors, 322

logging, 321

operation, 319, 320

optimization techniques, 323

pack structs and mappings, 321

protocol design, 320

storage operations, 320

temporary variables, 321

testing/profile, 322

tools, 322

transaction fee breakdown, 319

handling networks, 421

Hardhat, 325, 326, 328

Hardhat project, 410

ABI section, 412

angular contract services, 412–414

compiling contract, 411

defensive patterns, 417

estimation issues, 418

gas problems, 415

handling real errors, 415

script deployment, 412

SimpleStorageComponent, 414

SimpleStorage.sol, 411

INDEX

446

simulation fails, 416

strategies, 416, 417

healthcare, 126

high-value protocols, 308

identity and reputation systems,

312, 313

industries, 125

inheritance, 305

insurance, 126

interaction, 317

key applications, 47

legal and regulatory

challenges, 127–129

liability, 128

lifecycle, 125

line by line contract, 328

logic errors, 343

maintenance strategy, 318

marketplaces, 48

modifiers, 332

monitoring tools, 318

MythX, 343

Nexus Mutual, 129

on-chain vs. off-chain logic, 303, 304

patterns, 343, 422

payments, 126

plugins/custom scripts, 328

pragma/license, 331

programming languages, 124

Propy, 129

proxy pattern, 306

public functions/events, 303, 304

real-world application, 129

real-world asset tracking, 313

real-world management, 49

real-world patterns, 418

real-world use cases, 301

reentrancy/call context, 307

Remix IDE, 327

rental agreements, 125

route guards, 419

sector, 127

security, 420

slither, 343

solidity, 305, 306, 315

source code, 298

state variables, 331

supply chain, 48

testing, 333

Foundry, 341

fuzz flow, 342, 343

goals, 339

invariant, 342

security, 339

strategies, 344

traditional applications, 339

types/tools, 340

unit testing (Hardhat), 340

tool comparison table, 327

traceability, 126

vs. traditional contracts, 297, 298

transaction status pattern, 420

Truffle, 326

validity, 127

verification, 125

verification links, 317

vote function, 333

vulnerabilities, 342

workflow recommendation, 328

Solana (SOL), 70, 84

SPA, see Single-page application (SPA)

SSE, see Server-Sent Events (SSE)

SSR, see Server-side rendering (SSR)

Stablecoins, 28

adoption barriers, 113

Smart contracts (cont.)

INDEX

447

algorithmic adjustments, 113

commodity, 112

comparison, 112

E-Commerce, 113

fiat currency, 112

key features, 111

remittances, 113

types of, 113

use cases, 113

volatility, 113

State management

approaches, 366

components, 361, 362

fine-grained reactivity, 364, 365

overengineering, 365

reactive state (RxJS), 363

signals, 364

single-page application, 362

store patterns, 364

Stellar (XLM), 107

Storage decentralization

architecture, 51

censorship resistance, 50

components, 49

data integrity, 50

networks, 50

security and privacy, 50

vulnerabilities, 49

Supply chain management

advantages, 134, 135

benefits, 133, 134

emerging technologies, 135, 136

Everledger, 132

future trends, 136

key application, 130

logistics and retail companies, 131

Maersk/TradeLans, 132

real-world application, 133

smart contracts, 135

standards, 135

transparency/traceability

features, 130

food items, 130

high-value items, 131

IBM Food Trust, 131

pharmaceutical industry, 131

provenance verification, 130

real-time tracking, 130

trust/efficiency, 133

VeChain, 132

Supply chains, 156

Sweden’s Lantmäteriet, 123

T

Traditional transaction systems

batch processing, 151

challenges, 154

consensus protocols, 154

cost/speed benefits, 150, 151

cross-border payments, 151

cross-chain solutions, 154

DeFi platforms, 153

e-governments, 153

gaming industry, 153

healthcare billing, 153

improvements, 149

instant settlements, 150

integration, 154

IoT devices, 153

key comparisons, 151

microtransactions, 152

reliability and accessibility, 152

remittance services, 152

settlement, 151

speed information, 165

INDEX

448

Avalanche, 167

banking systems, 167

block size/time, 166

comparisons, 165

consensus protocol, 165

cross-chain communication, 169

energy consumption, 168

hardware acceleration, 169

interoperability, 168

multi-tiered system, 169

network congestion, 166

network scalability, 166

optimistic rollups/zk-Rollups, 168

Polygon processes, 167

real-time processing, 167

Ripple (XRP), 167

settlement times, 167

sharding techniques, 168

Solana, 167

technical complexity, 168

trade-offs, 168

supply chains, 153

Transparency

academic institutions, 156

auditability, 155

challenges, 157

charitable donations, 157

collaboration, 155

consensus mechanisms, 155

corporate governance, 156

DIDs, 158

food products, 157

hybrid models, 159

industries, 156

integration, 158

intellectual property, 157

interoperability, 159

medical records, 156

misinterpretation, 158

participants, 155

principles, 155

privacy concerns, 157

public records, 156

recordkeeping, 155

security, 158

sustainability, 157

tokenization, 159

Transparent transaction records

accountability/security, 41

driving technologies, 43–53

features, 38

financial system, 40

fundamental principle, 36

immutable ledgers, 38

open-source development, 36–38

supply chain management, 39, 40

trust mechanisms, 42

user empowerment, 41

users/developers, 41–43

U

UI, see User interface (UI)

User interface (UI)

angular materials, 371

components, 371, 374, 375

consistent design, 375

customization, 372

layout components, 374

material components, 372

navigation, 373

theming system, 372

validation, 373

Traditional transaction systems (cont.)

INDEX

449

V

Voting system

accessibility, 137

authentication, 136, 139

benefits, 137, 139

casting, 136

challenges, 136, 141

decentralized storage, 137

developments, 143

emerging technologies, 143

Estonia, 141

features, 136, 137

immutable record, 137

initiatives, 142

privacy concerns, 140

public perception, 140

real-time auditing, 137

regulations/legal frameworks, 140

scalability, 139

security, 137

Sierra Leone, 142

Switzerland, 142

transparency, 137

Voatz, 142

West Virginia, 141

working process, 137

zero-knowledge proofs, 143

W, X, Y

Wallets

angular applications, 423

asymmetric cryptography, 211, 212

backup recovery phrase, 215

custodial, 214

dApps, 345

fundamental concepts, 209

hardware devices

advantages, 239

browser extension, 241

disadvantages, 240

private keys, 239

transaction, 239

use of, 240

hot/cold wallets, 213, 214

indispensable roles, 210

integration

blockchain, 403

connection, 403

reactive architecture, 406

requesting permissions/signing,

405, 406

service, 403

signals/observables, 404

state reaction, 404, 405

user security, 406

mnemonic phrase (see

Mnemonic phrase)

non-custodial, 214

paper

advantages, 244

comparison, 246

disadvantages, 244

physical printout, 243

real-world application, 245

use of, 245

working process, 244

private and public keys, 210

providers

authentication, 254, 255

categories, 273

critical differences, 269

key management, 254, 255, 270

keys/identities/signatures, 270

INDEX

450

MetaMask, 273

pluggable modules, 277

private key, 270

RPC comparison, 276

session management/

permissions, 272

signing flow process, 272, 273

technical approaches, 270

types of, 276

real-world application, 215

security, 215

setup process

comparison, 233

convenience/control, 233

creation, 233, 234

customization, 236

mnemonic phrase, 234

password protection, 235

physical device, 239

pitfalls/solutions, 236, 237

principles, 233

self-empowerment, 238

software/hardware wallets, 233, 234

testing process, 236

types of, 238

software devices

advantages, 242

disadvantages, 242

program/application, 241

real-world application, 243

users protocols, 243

working process, 241

transaction process, 212, 213

Web2 application vs. Web3 application

architectural differences, 177

cloud storage, 182

content ownership, 180, 181

DeFi platforms, 182

financial interactions, 180

identities, 179, 180

industry transitions, 183

login flow, 179

social media, 181

social web, 177

transformation, 178

user experience, 179

Web3 application

application types, 53–63

benefits/features, 5–7

Blockchain (see Blockchain

technology)

centralized vs. decentralized

network, 3

digital ownership/identity, 6

dynamic/interactive/social web, 4

evolution, 2, 3

foundational transformation, 1

frontends, 419

incentivization, 7

interoperability, 6

migration, 5

native payments, 26–36

ownership, 19–26

security, 7, 9–18

social impact, 9, 10

societal implications, 8

static web pages, 4

technologies, 2

tokenomics, 7

transition, 4

transparency, 36–42

transparency/open source, 7

trustless/permissionless, 6

UI/UX patterns, 348

Web2 architecture, 8

Wallets (cont.)

INDEX

451

Web development (see Angular

application)

WebSockets, 369

Z

Zero-knowledge proofs (ZKPs), 10

ZKPs, see Zero-knowledge proofs (ZKPs)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Introduction
	Chapter 1: Web3
	Introduction
	Introduction to Web3
	Definition and Scope of Web3
	Evolution from Web1 and Web2
	Web1: The Static Web
	Web2: The Social and Interactive Web
	The Need for Web3
	Key Characteristics of Web3
	The Broader Implications of Web3

	Security
	Cryptographic Principles
	Decentralized Security Mechanisms
	Security Challenges and Solutions

	Ownership
	Concept of Digital Ownership
	Non-Fungible Tokens (NFTs)
	Implications for Content Creators and Consumers

	Native Payments
	Integration of Cryptocurrency
	Benefits over Traditional Payment Systems
	Case Studies and Examples

	Transparency
	Open-Source Nature of Web3
	Transparent Transaction Records
	Benefits for Users and Developers

	Driving Technologies
	Blockchain Technology
	Smart Contracts
	Decentralized Storage and Computing

	Application Types
	Decentralized Applications (DApps)
	Decentralized Finance (DeFi) Platforms

	Conclusion
	Chapter Summary

	Chapter 2: Blockchain
	Introduction
	Introduction to Blockchain
	Definitions and Basic Concepts
	Historical Background and Evolution
	Blockchain 1.0: Bitcoin and Cryptocurrencies
	Blockchain 2.0: Smart Contracts and Ethereum
	Blockchain 3.0: Scalability and Interoperability
	Key Players and Projects
	Technology Overview
	Blockchain Architecture
	Consensus Mechanisms
	Nodes and Network Structure
	Understanding Blockchain Transactions
	Transaction Lifecycle
	Transaction Fees and Incentives
	The Principle of Decentralization
	Definition and Importance
	Benefits over Centralized Systems
	Challenges and Trade-Offs
	Blockchain Security
	Cryptographic Security
	Network Security Mechanisms
	Case Studies of Security Breaches and Solutions

	Conclusion
	Chapter Summary

	Chapter 3: Use Cases
	Introduction
	Blockchain Applications
	Finance
	Currency
	Property Records
	Smart Contracts
	Supply Chains
	Voting

	Conclusion
	Chapter Summary

	Chapter 4: Pros and Cons of Blockchain
	Introduction
	The Benefit of Decentralization
	Reduced Single Points of Failure
	Enhanced Security and Resilience
	Real-World Examples of Decentralization Benefits
	Challenges of Decentralization

	Efficient Transactions
	Speed and Cost Benefits
	Comparisons with Traditional Systems
	Reliability and Accessibility
	Examples of Efficient Transactions in Practice
	Innovative Use Cases for Transaction Efficiency
	Challenges to Achieving Efficiency
	Future Trends in Blockchain Efficiency

	Transparency in Blockchain
	Public Ledger Benefits
	Applications in Various Sectors
	Innovative Use Cases
	Challenges of Blockchain Transparency
	Future Trends in Blockchain Transparency

	Cost Considerations
	Initial Setup and Operational Costs
	Cost Savings Through Efficiency
	Balancing Costs and Benefits
	Environmental Costs
	Case Studies of Cost-Saving Implementations
	Future Trends in Cost Management

	Transaction Speed
	Factors Affecting Speed
	Comparisons with Traditional Systems
	Examples of High-Speed Blockchains
	Challenges in Achieving High Speed
	Innovations in Driving Transaction Speed
	Future Trends in Transaction Speed

	Regulatory Challenges
	Legal and Compliance Issues
	Case Studies of Regulatory Responses
	Challenges in Regulatory Implementation
	Opportunities for Regulatory Advancement
	Future Trends in Regulation
	Expanded Regulatory Applications

	Conclusion
	Chapter Summary

	Chapter 5: Blockchain Applications
	Introduction
	Differences Between Web2 and Web3
	Architectural Differences
	User Experience Changes
	Identity and Access
	Financial Interactions
	Content Ownership
	Case Studies of Transition

	Choosing the Right Blockchain
	Factors to Consider
	Scalability
	Security
	Decentralization
	Developer Ecosystem
	Costs
	Regulatory Environment
	Interoperability
	Comparisons of Popular Blockchains
	Decision-Making Framework

	Introduction to Ethereum
	Overview of the Ethereum Platform
	Ethereum’s Vision
	Key Features and Functionalities
	Smart Contracts
	Ethereum Virtual Machine (EVM)
	Ether (ETH)
	Proof of Stake (PoS)
	Layer 2 Scaling Solutions
	Token Standards
	Ethereum Ecosystem and Community
	DeFi on Ethereum
	NFTs and the Creator Economy
	DAOs and Decentralized Governance
	Developer Ecosystem
	Ethereum’s Future

	Conclusion
	Chapter Summary

	Chapter 6: Wallet
	Introduction
	Understanding Cryptocurrency Wallets
	What Is a Cryptocurrency Wallet?
	Definition
	Purpose
	How Wallets Work
	Asymmetric Cryptography
	Transaction Process
	Types of Wallets
	Custodial vs. Non-custodial Wallets
	Importance of Wallet Security
	Common Misconceptions About Wallets
	Real-World Examples

	Mnemonic Phrases and Their Importance
	What Is a Mnemonic Phrase?
	Why Is It Important?
	Best Practices for Mnemonic Phrase Security
	Real-World Lessons: Horror Stories
	Advanced Security Techniques
	Encrypting Your Mnemonic
	Multi-signature Wallets
	Hidden Wallets
	Cold Storage Solutions

	Keys: Public and Private
	Definition and Differences
	What Is a Private Key?
	What Is a Public Key?
	Key Differences: Private vs. Public
	Why Is This System Brilliant?
	Importance of Key Management
	Common Key Management Strategies
	Real-World Key Management Failures
	Advanced Key Management Strategies

	Wallet Setup Process
	Step-by-Step Guide to Setting Up a Wallet
	Common Pitfalls and Solutions

	Types of Wallets
	Hardware Wallets
	What Is a Hardware Wallet?
	How Hardware Wallets Work
	Advantages of Hardware Wallets
	Disadvantages of Hardware Wallets
	When to Use a Hardware Wallet
	Real-World Example
	Software Wallets
	What Is a Software Wallet?
	How Software Wallets Work
	Advantages of Software Wallets
	Disadvantages of Software Wallets
	When to Use a Software Wallet
	Real-World Example
	Paper Wallets
	What Is a Paper Wallet?
	How Paper Wallets Work
	Advantages of Paper Wallets
	Disadvantages of Paper Wallets
	When to Use a Paper Wallet
	Real-World Example
	Comparing Wallet Types

	Conclusion
	Chapter Summary

	Chapter 7: Provider
	Introduction
	Role of Providers in Blockchain
	What Is a Provider?
	Why Providers Are Needed
	Historical Evolution of Providers
	Types of Providers
	Full Node Providers
	RPC Providers (Remote Procedure Call Providers)
	Wallet Providers
	Gateway Providers
	Indexing and Querying Providers
	Hybrid Providers
	Why Providers Are Critical to Blockchain Growth

	Network Considerations for Providers
	Performance Metrics
	Latency
	Throughput
	Uptime
	Global Geographic Coverage
	Reliability and Failover Strategies
	Multi-region Redundancy
	Automatic Retries and Circuit Breakers
	Provider Fallback Mechanisms
	Security Implications
	Man-in-the-Middle (MITM) Risks
	Data Injection Attacks
	Key Management
	Privacy Considerations
	IP Address Exposure
	Transaction Metadata Leakage
	Techniques to Preserve Privacy

	Comparing Wallet Providers vs. RPC Providers
	Wallet Providers
	Key Responsibilities of Wallet Providers
	Private Key Management
	Transaction Construction and Signing
	Session Management and Permissions
	Categories of Wallet Providers
	Real-World Case Study: MetaMask
	RPC Providers
	Key Responsibilities of RPC Providers
	API Exposure
	Node Management and Scaling
	Real-World Case Study: Infura
	Key Differences: A Deeper Comparison
	Choosing the Right Provider(s)

	Provider Selection Criteria
	Speed and Performance
	Key Performance Indicators (KPIs)
	Importance of Regional Distribution
	Case Study: NFT Minting Stress Test
	Decentralization and Trust Models
	Levels of Decentralization
	Why Trust Models Matter
	Case Study: Infura Outage (2020)
	Security and Compliance
	Security Factors to Evaluate
	Regulatory and Legal Compliance
	Case Study: Tornado Cash Sanctions (2022)
	Cost and Pricing Structures
	Cost Factors to Compare
	Optimizing Costs
	Developer Experience (DX)
	Multichain and Scalability Support
	Future-Readiness: Emerging Technologies

	Advanced Provider Topics
	Self-Hosting RPC Endpoints
	Requirements for Running Full Nodes
	Operational Challenges
	When Self-Hosting Makes Sense
	Hybrid Architectures
	Decentralized RPC Networks
	Case Study: Pocket Network Growth
	Provider Aggregators and Fallback Systems
	Example Strategies
	Libraries Supporting Provider Aggregation
	Multichain Application Design

	Evolving Responsibilities of Providers
	Best Practices for Working with Providers
	The Future of Providers

	Conclusion
	Chapter Summary

	Chapter 8: Smart Contracts and Decentralized Applications
	Introduction
	Deep Dive into Smart Contracts
	What Are Smart Contracts?
	Core Properties
	How Smart Contracts Differ from Traditional Contracts
	How Smart Contracts Work (Under the Hood)
	The Ethereum Virtual Machine (EVM)
	Limitations and Design Constraints
	Real-World Examples of Simple Contracts
	Why Smart Contracts Matter
	Smart Contract Architecture
	On-Chain vs. Off-Chain Logic
	Contract Interfaces and ABIs
	Storage and State Design
	Modularity and Contract Composition
	Inheritance
	Delegation (Proxy Pattern)
	Events and Logs
	Reentrancy and Call Context
	Composability and Interoperability
	Popular Use Cases for Smart Contracts
	Decentralized Finance (DeFi)
	Non-Fungible Tokens (NFTs)
	Marketplace Contracts (e.g., OpenSea and Blur)
	Decentralized Autonomous Organizations (DAOs)
	Escrow and Conditional Payments
	Identity and Reputation Systems
	Gaming and Virtual Economies
	Supply Chain and Real-World Asset Tracking
	The Smart Contract Lifecycle
	Drafting the Contract Logic
	Writing the Contract (Solidity)
	Compiling the Contract
	Deploying the Contract
	Verifying the Contract
	Interacting with the Contract
	Monitoring and Maintaining
	Gas, Costs, and Efficiency
	What Is Gas?
	Why Gas Efficiency Matters
	Common Gas Costs for Operations
	Optimizing Contract Design for Gas Efficiency
	Testing and Profiling Gas Usage
	Tools for Gas Profiling
	Gas Limits and Out-of-Gas Errors
	Gas Optimization Tradeoffs

	Implementation of Smart Contracts and dApps
	Development Tools Overview
	Hardhat
	Foundry
	Truffle
	Remix IDE
	Tool Comparison Table
	Plugin Ecosystem and Extensions
	Workflow Recommendation by Use Case
	Writing Your First Contract (Line by Line)
	Contract Goals
	Full Code (Solidity 0.8+)
	Walkthrough by Section
	Pragma and License
	State Variables
	Events
	Modifiers
	Constructor
	Vote Functions
	Close Voting (Owner Only)
	Testing Your Contract
	Compiling and Deploying Your Contract
	Understanding the Compilation Process
	Deployment Best Practices
	Testing and Security Best Practices
	The Role of Testing in Smart Contract Development
	Types of Smart Contract Tests
	Writing Unit Tests with Hardhat
	Writing Tests in Foundry
	Fuzz Testing and Invariant Checks
	Common Smart Contract Vulnerabilities
	Using Static Analysis Tools
	Slither
	MythX
	Foundry Coverage
	Auditing Basics
	Real-World Testing Strategy
	Integrating Smart Contracts into Decentralized Applications (dApps)
	dApp Architecture Overview
	Connecting to Wallets
	Using ethers.js to Call Contracts
	Calling View Functions (No Gas)
	Sending Transactions (Costs Gas)
	Displaying Events and Real-Time Feedback
	Handling Gas, Errors, and Confirmations
	Network Management and Testnets
	Using Frontend Libraries and Frameworks
	UI/UX Patterns for Web3

	Conclusion
	Chapter Summary

	Chapter 9: Web Development with Angular
	Introduction
	Introduction to Angular
	A Brief History
	From Rewrite to Reinvention
	Core Design Principles
	Who Uses Angular Today?
	Staying Current

	Angular Architecture and Core Concepts
	Components, Services, and Modules
	Routing and Navigation
	Change Detection
	Forms: Template-Driven vs. Reactive
	Directives and Pipes
	Component Lifecycle Hooks
	Putting It All Together

	Angular CLI and Project Setup
	Installing the Angular CLI
	Creating a New Project
	Project Structure
	Standalone vs. Module-Based Structure
	Environmental Management
	Modern Build System
	Extending the Project with Schematics
	Putting It into Practice

	State Management in Angular
	Why State Management Matters
	Local State with Components
	Reactive State with RxJS
	Global State with Store Patterns
	Fine-Grained Reactivity with Signals
	When to Avoid Overengineering
	Putting It into Practice

	Working with HTTP and APIs
	The HttpClient
	Creating a Service for API Calls
	Consuming Data in a Component
	Handling Errors and Retries
	Working with REST and GraphQL APIs
	Real-Time Data with WebSockets
	Example: API Service with Pagination
	Putting It into Practice

	Building Reusable UI with Angular Material
	What Is Angular Material?
	Adding Angular Material to a Project
	Theming and Customization
	Commonly Used Components
	Creating Custom Components with the CDK
	Combining Components into a Layout
	Putting It into Practice

	Routing, Guards, and Lazy Loading
	Angular Router Fundamentals
	Nested Routes and Route Parameters
	Route Guards
	Lazy Loading
	Advanced Routing Features
	Putting It into Practice

	Testing Angular Applications
	Why Test?
	Unit Testing Components and Services
	Testing Components with TestBed
	Modern Test Runners
	Mocking HTTP Requests
	End-to-End (E2E) Testing
	A Balanced Testing Strategy

	Performance Optimization
	Tree-Shaking and Ahead-of-Time (AOT) Compilation
	Change Detection Strategies
	Fine-Grained Reactivity and Zoneless Change Detection
	Component-Level Optimizations
	Lazy Loading and Route-Level Code Splitting
	Server-Side Rendering (SSR) and Hydration
	Putting It into Practice

	Angular in the Real World
	Angular vs. Other Frontend Approaches
	Best Practices from Large Projects
	Preparing for Modern Integrations
	Case Study: Evolving an Enterprise Dashboard
	Putting It All Together

	Conclusion
	Chapter Summary

	Chapter 10: Web3 Development with Angular
	Introduction
	Introduction to Decentralized Applications (dApps)
	What Defines a dApp?
	The Role of the Frontend
	Typical dApp Architecture
	Why Use Angular for dApps?
	What Comes Next

	Connecting Angular with Blockchain Networks
	Setting Up the Development Environment
	Required Tools and Versions
	Creating the Project Structure
	Running a Local Blockchain
	Compiling and Deploying
	Connecting the Angular App
	Using a Wallet
	Understanding Blockchain RPC Providers
	Using Libraries for Blockchain Access
	Managing Provider Connections in Angular Services
	Network Switching and Fallbacks
	Security Considerations
	Putting It into Practice

	Managing Wallet Integration
	What Is a Wallet?
	Connecting to a Wallet in an Angular App
	Handling Wallet State Reactively
	Requesting Permissions and Signing
	Security Best Practices
	Putting It into Practice

	Smart Contracts: Reading and Writing Data
	Interacting with Smart Contracts in Angular
	Reading Contract State
	Writing Data and Sending Transactions
	Handling Gas and Fees
	Handling Errors and Edge Cases
	Putting It into Practice
	Full Smart Contract Example with Hardhat
	Writing the Contract
	Compiling the Contract
	Deploying the Contract Locally
	Copy the ABI
	Creating the Angular Contract Service
	Using the Service in a Component
	Recap
	Handling Real Errors and Gas Estimation Problems
	Why “Cannot Estimate Gas” Happens
	Practical Strategies to Handle It
	Defensive Patterns
	Putting It into Practice
	Real-World Patterns for Web3 Frontends
	Protecting Routes and Features
	Listening for Blockchain Events
	Keeping UX Responsive
	Security Best Practices
	Handling Network Changes
	Resilient Error Handling
	Putting It into Practice

	Putting It All Together: A Mini Angular dApp
	A Practical Example: Decentralized Voting App
	Project Structure
	Connecting the Wallet
	Reading On-Chain Data
	Writing a Transaction
	Protecting Voting Routes
	Reactive Feedback
	Full Example: Combining It All
	Final Tips

	Testing and Deployment Strategies for Angular dApps
	Testing Smart Contracts
	Testing Angular Wallet Logic
	Using Testnets
	Deployment Best Practices
	Maintainability

	Conclusion
	Chapter Summary
	Final Words and Further Learning
	Suggested Resources for Continued Learning
	Keep Building

	Index

